Environmental Biology of Fishes

, Volume 98, Issue 6, pp 1609–1622 | Cite as

Characterizing the bull shark Carcharhinus leucas habitat in Fiji by the chemical and isotopic compositions of their teeth

  • László Kocsis
  • Torsten W. Vennemann
  • Alex Ulianov
  • Juerg M. Brunnschweiler
Article

Abstract

Bull sharks Carcharhinus leucas use estuarine and riverine systems as nursery habitat. The Shark Reef Marine Reserve (SRMR) on the southern coast of Viti Levu, Fiji, is well-known for its adult bull shark population. The species’ seasonal departure from the SRMR is related to reproductive activity, but nursery grounds have not yet been identified on the southern coast of Viti Levu. In order to further identify and characterise bull shark habitats in Fiji, 49 teeth were collected from bull sharks encountered at the SRMR and measured for their trace element concentrations, and 22 of them for oxygen isotopic composition in the phosphate group of bioapatite. The trace element analyses yielded relatively high Na, Mg, Sr, and F and low Ba concentrations for all the teeth supporting formation in marine environment. The phosphate oxygen isotope data concur with this result and the data evidently show that these teeth developed under marine condition relating to the temperature and oxygen isotopic composition of Fiji’s coastal waters. Therefore, the investigated teeth show no signs of freshwater habitat. Our results do not support the hypothesis that bull sharks enter freshwater habitats, at least not for longer time periods, during their absence from the SRMR. Additionally, the bull shark teeth had unexpectedly high zinc concentration at the very edge of the enameloid. This cannot be explained by environmental factors; therefore the high Zn content is interpreted here as a result of biological process, a reflection of enzyme (i.e., KLK4) related organic matter removal and enhanced crystallization during tooth maturation.

Keywords

Shark teeth Trace elements Oxygen isotopes in phosphate Zinc concentration Shark Reef Marine Reserve 

Supplementary material

10641_2015_386_MOESM1_ESM.mov (6.1 mb)
ESM 1(MOV 6266 kb)
10641_2015_386_MOESM2_ESM.pdf (227 kb)
ESM 2(PDF 227 kb)
10641_2015_386_MOESM3_ESM.pdf (27 kb)
ESM 3(PDF 26 kb)
10641_2015_386_MOESM4_ESM.pdf (1.3 mb)
ESM 4(PDF 1329 kb)

References

  1. Bruland KW, Lohan MC (2003) Controls of Trace Metals in Seawater. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry, vol. 6. pp 23–47Google Scholar
  2. Brunnschweiler JM (2010) The shark reef marine reserve: a marine tourism project in Fiji involving local communities. J Sustain Tour 18:29–42CrossRefGoogle Scholar
  3. Brunnschweiler JM, Baensch H (2011) Seasonal and long-term changes in relative abundance of bull sharks from a tourist shark feeding site in Fiji. PLoS ONE 6(1):e16597CrossRefPubMedCentralPubMedGoogle Scholar
  4. Brunnschweiler JM, Barnett A (2013) Opportunistic visitors: long-term behavioural response of bull sharks to food provisioning in Fiji. PLoS ONE 8(3):e58522CrossRefPubMedCentralPubMedGoogle Scholar
  5. Brunnschweiler JM, Queiroz N, Sims DW (2010) Oceans apart? Short-term movements and behaviour of adult bull sharks Carcharhinus leucas in Atlantic and Pacific Oceans determined from pop-off satellite archival tagging. J Fish Biol 77:1343–1358CrossRefPubMedGoogle Scholar
  6. Brunnschweiler JM, Abrantes KG, Barnett A (2014) Long-term changes in species composition and relative abundances of sharks at a provisioning site. PLoS ONE 9(1):e86682CrossRefPubMedCentralPubMedGoogle Scholar
  7. Compagno LJV (1984) FAO Species Catalogue, Vol. 4. Sharks of the World. An annotated and illustrated catalogue of shark species known to date. FAO Fish Synop (125) 4(1): i-viii, 1–250, 4(2): i-x, 251–655Google Scholar
  8. Cornish AS, Ng WC, Ho VCM, Wong HL, Lam JCW, Lam PKS, Leung KMY (2007) Trace metals and organochlorines in the bamboo shark Chiloscyllium plagiosum from the southern waters of Hong Kong, China. Sci Total Environ 376:335–345CrossRefPubMedGoogle Scholar
  9. Crowson RA, Showers WJ, Wright EK, Hoering TC (1991) Preparation of phosphate samples for oxygen isotope analysis. Anal Chem 63:2397–2400CrossRefGoogle Scholar
  10. Cruz-Martínez A, Chiappa-Carrara X, Arenas-Fuentes V (2005) Age and growth of the bull shark, Carcharhinus leucas, from southern gulf of Mexico. J Northwest Atl Fish Sci 35:367–374Google Scholar
  11. Curtis TH, Adams DH, Burgess GH (2011) Seasonal distribution and habitat associations of bull sharks in the Indian river lagoon, Florida: a 30-year synthesis. Trans Am Fish Soc 140:1213–1226CrossRefGoogle Scholar
  12. Daclusi G, Kerebel LM (1980) Ultrastructural study and comparative analysis of fluoride content of enameloid in sea-water and fresh-water sharks. Arch Oral Biol 25:145–151CrossRefGoogle Scholar
  13. Dahm S, Risnes S (1999) Comparative infrared spectroscopic study of hydroxide and carbonate absorption bands in spectra of shark enameloid, shark dentin, and a geological apatite. Calcif Tissue Int 65:459–465CrossRefPubMedGoogle Scholar
  14. Debela M, Magdolen V, Grimminger V, Sommerhoff C, Messerschmidt A, Huber R, Friedrich R, Bode W, Goettig P (2006) Crystal structures of human tissue kallikrein 4: activity modulation by a specific zinc binding site. J Mol Biol 362:1094–1107CrossRefPubMedGoogle Scholar
  15. Dettman DL, Kohn MJ, Quade J, Ryerson FJ, Ojha TP, Hamidullah S (2001) Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 m.y. Geology 29:31–34CrossRefGoogle Scholar
  16. Domi N, Bouquegneau JM, Das K (2005) Feeding ecology of five commercial shark species of the Celtic Sea through stable isotope and trace metal analysis. Mar Environ Res 60:551–569CrossRefPubMedGoogle Scholar
  17. Edmonds JS, Shibata Y, Lenanton RCJ, Caputi N, Morita M (1996) Elemental composition of jaw cartilage of gummy shark Mustelus antarcticus Günther. Sci Total Environ 192:151–161CrossRefGoogle Scholar
  18. Elliott J (2002) Calcium phosphate biominerals. In: Kohn JM, Rakovan J, Hughes JM (eds) Review in Mineralogy and Geochemistry, vol. 48. pp 427–454Google Scholar
  19. Epstein S, Mayeda TK (1953) Variations of the 18O/16O ratio in natural waters. Geochim Cosmochim Acta 4:213–224CrossRefGoogle Scholar
  20. Fischer J, Voigt S, Schneider JW, Buchwitz M, Voigt S (2011) A selachian freshwater fauna from the Triassic of Kyrgyzstan and its implication for Mesozoic shark nurseries. J Vertebr Paleontol 31:937–953CrossRefGoogle Scholar
  21. Fischer J, Voigt S, Franz M, Schneider JW, Joachimski MM, Tichomirowa M, Götze J, Furrer H (2012) Palaeoenvironments of the late Triassic Rhaetian Sea: implications from oxygen and strontium isotopes of hybodont shark teeth. Palaeogeogr Palaeoclimatol Palaeoecol 353–355:60–72CrossRefGoogle Scholar
  22. Frassinetti S, Bronzetti G, Caltavuturo L, Cini M, Croce CD (2006) The role of zinc in life: a review. J Environ Pathol Toxicol Oncol 25:597–610CrossRefPubMedGoogle Scholar
  23. Gaillardet J, Viers J, Dupré B (2003) Trace Elements in River Waters. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry, vol. 5. pp 225–272Google Scholar
  24. Gillanders BM, Sanchez-Jerez P, Bayle-Sempere J, Ramos-Espla A (2001) Trace elements in otoliths of the two-banded bream from a coastal region in the south-west Mediterranean: are there differences among locations? General trace element chemistry. J Fish Biol 59:350–363CrossRefGoogle Scholar
  25. Goettig P, Magdolen V, Brandstetter H (2010) Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie 92:1546–1567CrossRefPubMedCentralPubMedGoogle Scholar
  26. Heupel MR, Simpfendorfer CA (2008) Movement and distribution of young bull sharks Carcharhinus leucas in a variable estuarine environment. Aquat Biol 1:277–289CrossRefGoogle Scholar
  27. Heupel MR, Yeiser BG, Collins AB, Ortega L, Simpfendorfer CA (2010) Long-term presence and movement patterns of juvenile bull sharks, Carcharhinus leucas, in an estuarine river system. Mar Freshw Res 61:1–10CrossRefGoogle Scholar
  28. Hoefs J (2004) Stable Isotope Geochemistry, 5th edn. Springer, Berlin, p 340CrossRefGoogle Scholar
  29. Kemp NE (1999) Integumentary system and teeth. In: Hamlett WC (ed) Sharks, skates, and rays: The biology of elasmobranch fishes. The John Hopkins University Press, Baltimore, pp 43–68Google Scholar
  30. Klug S, Tütken T, Wings O, Pfretzschner H-U, Martin T (2010) A Late Jurassic freshwater shark assemblage (Chondrichthyes, Hybodontiformes) from the southern Junggar Basin, Xinjiang, Northwest China. Palaeobio Palaeoenviron 90:241–257CrossRefGoogle Scholar
  31. Koch PL, Halliday AN, Walter LM, Stearley RF, Huston TJ, Smith GR (1992) Sr isotopic composition of hydroxyapatite from recent and fossil salmon – the record of lifetime migration and diagenesis. Earth Planet Sci Lett 108:277–287CrossRefGoogle Scholar
  32. Koch PL, Tuross N, Fogel ML (1997) The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. J Archaeol Sci 24:417–429CrossRefGoogle Scholar
  33. Kocsis L, Vennemann TW, Fontignie D (2007) Migration of sharks into freshwater systems during the Miocene and implications for Alpine paleoelevation. Geology 35:451–454CrossRefGoogle Scholar
  34. Kocsis L, Vennemann TW, Hegner E, Fontignie D, Tütken T (2009) Constraints on Miocene oceanography and climate in the Western and Central Paratethys: O-, Sr-, and Nd-isotope compositions of marine fish and mammal remains. Palaeogeogr Palaeoclimatol Palaeoecol 271:117–129CrossRefGoogle Scholar
  35. Kolodny Y, Luz B, Navon O (1983) Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite-rechecking the rules of the game. Earth Planet Sci Lett 64:398–404CrossRefGoogle Scholar
  36. Kraemer LD, Campbell PGC, Hare L (2005) Dynamics of Cd, Cu and Zn accumulation in organs and sub-cellular fractions in field transplanted juvenile yellow perch (Perca flavescens). Environ Pollut 138:324–337CrossRefPubMedGoogle Scholar
  37. Lécuyer C, Amiot R, Touzeau A, Trotter J (2013) Calibration of the phosphate δ18O thermometer with carbonate–water oxygen isotope fractionation equations. Chem Geol 347:217–226CrossRefGoogle Scholar
  38. LeGeros RZ, Suga S (1980) Crystallographic nature of fluoride in enameloids of fish. Calcif Tissue Int 32:169–174CrossRefPubMedGoogle Scholar
  39. Longinelli A, Nuti S (1973) Oxygen isotope measurements from fish teeth and bones. Earth Planet Sci Lett 20:337–340CrossRefGoogle Scholar
  40. Lu Y, Papagerakis P, Yamakoshi Y, Hu JC-C, Bartlett JD, Simmer JP (2008) Functions of KLK4 and MMP-20 in dental enamel formation. Biol Chem 389:695–700CrossRefPubMedCentralPubMedGoogle Scholar
  41. MacKenzie KM, Palmer MR, Moore A, Ibbotson AT, Beaumont WRC, Poulter DJS, Trueman CN (2011) Locations of marine animals revealed by carbon isotopes. Nat Sci Rep 1(21):1–6Google Scholar
  42. Marcovecchio JE, Moreno VJ, Perez A (1991) Metal accumulation in tissues of sharks from the Bahia Blanca estuary, Argentina. Mar Environ Res 31:263–274CrossRefGoogle Scholar
  43. McCulloch M, Cappo M, Aumend J, Muller W (2005) Tracing the life history of individual barramundi using laser ablation MC-ICP-MS Sr-isotopic and Sr/Ba ratios in otoliths. Mar Freshw Res 56:637–644CrossRefGoogle Scholar
  44. McMeans BC, Borga K, Bechtol WR, Higginbotham D, Fisk AT (2007) Essential and non-essential element concentrations in two sleeper shark species collected in arctic waters. Environ Pollut 148:281–290CrossRefPubMedGoogle Scholar
  45. Miake Y, Aoba T, Moreno EC, Shimoda S, Prostak K, Suga S (1991) Ultrastructural studies on crystal-growth of enameloid minerals in elasmobranch and teleost fish. Calcif Tissue Int 48:204–217CrossRefGoogle Scholar
  46. Moller IJ, Melsen B, Jensen SJ, Kirkegaard E (1975) A histological, chemical and X-ray diffraction study on contemporary (Carcharias glaucus) and fossilized (Macrota odontaspis) shark teeth. Arch Oral Biol 20:797–802CrossRefPubMedGoogle Scholar
  47. Morrison RJ, Naqasima MR (1999) Fiji’s Great Astrolabe Lagoon: baseline study and management issues for a pristine marine environment. Ocean Coast Manag 42:617–636CrossRefGoogle Scholar
  48. Morrison RJ, Gangaiya P, Naqasima MR, Naidu R (1997) Trace metal studies in the Great Astrolabe Lagoon, Fiji, a pristine marine environment. Mar Pollut Bull 34:353–356CrossRefGoogle Scholar
  49. Morrison RJ, Narayan SP, Gangaiya P (2001) Trace element studies in Laucala Bay, Suva, Fiji. Mar Pollut Bull 42:397–404CrossRefPubMedGoogle Scholar
  50. Motta PJ, Wilga CD (2001) Advances in the study of feeding behaviors, mechanisms, and mechanics of sharks. Environ Biol Fish 60:131–156CrossRefGoogle Scholar
  51. Outridge PM, Chenery SR, Babaluk JA, Reist JD (2002) Analysis of geological Sr isotope markers in fish otoliths with subannual resolution using laser ablation-multicollector-ICP-mass spectrometry. Environ Geol 42:891–899CrossRefGoogle Scholar
  52. Rasalato E, Maginnity V, Brunnschweiler JM (2010) Using local ecological knowledge to identify shark river habitats in Fiji (South Pacific). Environ Conserv 37:90–97CrossRefGoogle Scholar
  53. Shephard S, Trueman C, Rickaby R, Rogan E (2007) Juvenile life history of NE Atlantic orange roughy from otolith stable isotopes. Deep-Sea Res Pt I 54:1221–1230CrossRefGoogle Scholar
  54. Simmer JP, Hu Y, Lertlam R, Yamakoshi Y, Hu JCC (2009) Hypomaturation enamel defects in Klk4 knockout/LacZ knockin mice. J Biol Chem 284:19110–19121CrossRefPubMedCentralPubMedGoogle Scholar
  55. Simpfendorfer CA, Freitas GG, Wiley TR, Heupel MR (2005) Distribution and habitat partitioning of immature bull sharks (Carcharhinus leucas) in a southwest Florida estuary. Estuaries 28:78–85CrossRefGoogle Scholar
  56. Singh A, Aung T (2008) Salinity, Temperature and Turbidity Structure in the Suva Lagoon, Fiji. Am J Environ Sci 4:266–275CrossRefGoogle Scholar
  57. Skinner WCH, Jahren AH (2007) Biomineralization. In: Holland HD, Turekian KK (eds.) Treatise on Geochemistry, Ch. 8.04, pp 1–69Google Scholar
  58. Staniskiene B, Matusevicius P, Budreckiene R, Skibniewska KA (2006) Distribution of heavy metals in tissues of freshwater fish in Lithuania. Pol J Environ Stud 15:585–591Google Scholar
  59. Suga S, Taki Y, Wada K (1983) Fluoride concentration in the teeth of perciform fishes and its phylogenetic significance. Jpn J Ichthyol 30:81–93Google Scholar
  60. Suga S, Taki Y, Wada K (1986) Biological significance of fluoride in fish teeth. Stud Environ Sci 27:285–297CrossRefGoogle Scholar
  61. Suga S, Taki Y, Ogawa M (1993) Fluoride and iron concentrations in the enameloid of lower teleostean fish. J Dent Res 72:912–922CrossRefPubMedGoogle Scholar
  62. Tillett BJ, Meekan MG, Parry D, Munksgaard N, Field IC, Thorburn D, Bradshaw CJA (2011) Decoding fingerprints: elemental composition of vertebrae correlates to age-related habitat use in two morphologically similar sharks. Mar Ecol Prog Ser 434:133–142CrossRefGoogle Scholar
  63. Tillett BJ, Meekan MG, Field IC, Thorburn DC, Ovenden JR (2012) Evidence for reproductive philopatry in the bull shark Carcharhinus leucas. J Fish Biol 80:2140–2158CrossRefPubMedGoogle Scholar
  64. Tsukamoto K, Watanabe S, Kuroki M, Aoyama J, Miller MJ (2014) Freshwater habitat use by a moray eel species, Gymnothorax polyuranodon, in Fiji shown by otolith microchemistry. Environ Biol Fish 97:1377–1385CrossRefGoogle Scholar
  65. Turoczy NJ, Laurenson LJB, Allinson G, Nishikawa M, Lambert DF, Smith C, Cottier JPE, Irvine SB, Stagnitti F (2000) Observations on metal concentrations in three species of shark (Deania calcea, Centroscymnus crepidater, and Centroscymnus owstoni) from Southeastern Australian Waters. J Agric Food Chem 48:4357–4364CrossRefPubMedGoogle Scholar
  66. Vennemann TW, Hegner E, Cliff G, Benz GW (2001) Isotopic composition of recent shark teeth as a proxy for environmental conditions. Geochim Cosmochim Acta 65:1583–1599CrossRefGoogle Scholar
  67. White WM (1998) The Ocean as a Chemical system. Geochemistry, an on-line textbook, vol. 15. pp 645–701Google Scholar
  68. Zacke A, Voigt S, Joachimski MM, Gale AS, Ward DJ, Tütken T (2009) Surface-water freshening and high-latitude river discharge in the Eocene North Sea. J Geol Soc 166:969–980CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • László Kocsis
    • 1
    • 4
  • Torsten W. Vennemann
    • 2
  • Alex Ulianov
    • 1
  • Juerg M. Brunnschweiler
    • 3
  1. 1.Institute of Earth Sciences, UNIL-GEOPOLISUniversity of LausanneLausanneSwitzerland
  2. 2.Institute of Earth Surface Dynamics, UNIL-GEOPOLISUniversity of LausanneLausanneSwitzerland
  3. 3.ZurichSwitzerland
  4. 4.Geology Group, Faculty of ScienceUniversiti Brunei DarussalamGadongBrunei Darussalam

Personalised recommendations