Advertisement

Environmental Biology of Fishes

, Volume 97, Issue 12, pp 1377–1385 | Cite as

Freshwater habitat use by a moray eel species, Gymnothorax polyuranodon, in Fiji shown by otolith microchemistry

  • Katsumi Tsukamoto
  • Shun Watanabe
  • Mari Kuroki
  • Jun Aoyama
  • Michael J. Miller
Article

Abstract

Freshwater eels of the Anguillidae are diadromous because they migrate between ocean and freshwater environments, but other anguilliform fishes are generally considered to be strictly marine species. A few marine eels of the Muraenidae and Ophichthidae have occasionally been found in freshwater or estuaries, indicating that anguillids are not the only anguilliform eels that can use freshwater in some parts of the world. The moray eel Gymnothorax polyuranodon is one species that is known to be present in freshwater in the Indo-Pacific, but its life history is unknown. One way to evaluate what types of habitats are used by fishes is to determine the ratio of strontium (Sr) to calcium (Ca) in their otoliths, because this can show if they have used freshwater or saltwater environments. To evaluate the patterns of freshwater use by this unusual species of marine eel, the otolith Sr/Ca ratios of four G. polyuranodon (275–344 mm) caught in a freshwater stream of Fiji were analyzed. The consistently low Sr/Ca values (0–4) indicated upstream movement after settlement and freshwater or estuarine residence of all four individuals. These eels did not appear to have entered freshwater just for a short time period, which is consistent with other reports that this species is present in estuarine and freshwater habitats. This suggests that G. polyuranodon may be a catadromous species of marine eel. The similarities and differences between the life histories of anguillid eels and the few marine eels that have evolved the ability to invade freshwater habitats is discussed in relation to the evolutionary origin of diadromy in anguilliform fishes that originated in the marine environment.

Keywords

Anguilliformes Muraenidae Diadromy Freshwater habitat use Sr/Ca Fiji 

References

  1. Aoyama J (2009) Life history and evolution of migration in catadromous eels (genus Anguilla). Aqua-BioSci Monogr 2(1):1–42CrossRefGoogle Scholar
  2. Bell GW, Witting DA, Able KW (2003) Aspects of metamorphosis and habitat use in the conger eel, Conger oceanicus. Copeia 2003:544–552CrossRefGoogle Scholar
  3. Böhlke EB (ed) (1989) Fishes of the Western North Atlantic. Orders Anguilliformes and Saccopharyngiformes. Part 9, vol 1. Sears Foundation for Marine Research, New Haven, pp 1–655Google Scholar
  4. Böhlke EB, McCosker JE (2001) The moray eels of Australia and New Zealand, with the description of two new species (Anguilliformes: Muraenidae). Rec Aust Mus 53:71–102CrossRefGoogle Scholar
  5. Castle PHJ (1984) Notacanthiformes and Anguilliformes: development. In: Moser HG, Richards WJ (eds), Ontogeny and systematics of fishes. Amer. Soc. Ichthyol Herpetol Spec Publ 1. American Society of Ichthyologists and Hepetologists, New York, pp. 62–93Google Scholar
  6. Coluccia E, Deiana AM, Libertini A, Salvadori S (2010) Cytogenetic characterization of the moray eel Gymnothorax tile and chromosomal banding comparison in Muraenidae (Anguilliformes). Mar Biol Res 6:106–111CrossRefGoogle Scholar
  7. Daverat F, Limburg KE, Thibault I, Shiao J-C, Dodson JJ, Caron F, Tzeng W-N, Iizuka Y, Wickström H (2006) Phenotypic plasticity of habitat use by three temperate eel species, Anguilla anguilla, A. japonica and A. rostrata. Mar Ecol Prog Ser 308:231–241CrossRefGoogle Scholar
  8. Donaldson TJ, Myers RR (2002) Insular freshwater fish faunas of Micronesia: patterns of species richness and similarity. Environ Biol Fish 65:139–149CrossRefGoogle Scholar
  9. Ebner BC, Kroll B, Godfrey P, Thuesen PA, Vallance T, Pusey B, Allen GR, Rayner TS, Perna N (2011) Is the elusive Gymnothorax polyuranodon really a freshwater moray? J Fish Biol 79:70–79PubMedCrossRefGoogle Scholar
  10. Ege V (1939) A revision of the genus Anguilla Shaw, a systematic, phylogenetic and geographical study. Dana Rep 16:1–256Google Scholar
  11. Froese R, Pauly D (eds) (2011) Fishbase. World Wide Web Electronic Publication. Available at: http://www.fishbase.org/Version (April 2011)
  12. Gross MR (1987) Evolution of diadromy in fishes. In: Dadswell MJ, Klauda RJ, Moffitt CM, Saunders RL, Rulifson RA, Cooper JE (eds) American Fisheries Society, Symposium 1, Bethesda, Maryland, pp 12–25Google Scholar
  13. Gross MR, Coleman RM, McDowall RM (1988) Aquatic productivity and the evolution of diadromous fish migration. Science 239:1291–1293PubMedCrossRefGoogle Scholar
  14. Herrel A, Choi HF, Dumont E, De Schepper N, Vanhooydonck B, Aerts P, Adriaens D (2011) Burrowing and subsurface locomotion in anguilliform fish: behavioral specializations and mechanical constraints. J Exp Biol 214:379–1385CrossRefGoogle Scholar
  15. Inoue JG, Miya M, Tsukamoto K, Nishida M (2004) Mitogenomic evidence for the monophyly of elopomorph fishes (Teleostei) and the evolutionary origin of the leptocephalus larva. Mol Phylogenet Evol 32:274–286PubMedCrossRefGoogle Scholar
  16. Inoue JG, Miya M, Miller MJ, Sado T, Hanel R, López JA, Hatooka K, Aoyama J, Minegishi Y, Nishida M, Tsukamoto K (2010) Deep-ocean origin of the freshwater eels. Biol Lett 6:363–366PubMedCrossRefPubMedCentralGoogle Scholar
  17. Jessop BM, Cairns DK, Thibault I, Tzeng WN (2008) Life history of American eel Anguilla rostrata: new insights from otolith microchemistry. Aquat Biol 1:205–216CrossRefGoogle Scholar
  18. Johnson GD, Ida H, Sakaue J, Sado T, Asahida T, Miya M (2012) A ‘living fossil’ eel (Anguilliformes: Protoanguillidae, fam. nov.) from an undersea cave in Palau. Proc R Soc B 279:934–943PubMedCrossRefPubMedCentralGoogle Scholar
  19. Kaifu K, Tamura M, Aoyama J, Tsukamoto K (2010) Dispersal of yellow phase Japanese eels Anguilla japonica after recruitment in the Kojima Bay-Asahi River system, Japan. Environ Biol Fish 88:273–282CrossRefGoogle Scholar
  20. Kaifu K, Miller MJ, Aoyama J, Washitani I, Tsukamoto K (2013) Evidence of niche segregation between freshwater eels and conger eels in Kojima Bay Japan. Fish Sci 79:593–603CrossRefGoogle Scholar
  21. Kawakami Y, Mochioka N, Morishita K, Toh H, Nakazono A (1998) Determination of the freshwater mark in otoliths of Japanese eel elvers using microstructure and Sr/Ca ratios. Environ Biol Fish 53:421–427CrossRefGoogle Scholar
  22. Kotake A, Arai T, Ozawa T, Nojima S, Miller MJ, Tsukamoto K (2003) Variation in migratory history of Japanese eels, Anguilla japonica, collected in coastal waters of the Amakusa Islands, Japan, inferred from otolith Sr/Ca ratios. Mar Biol 142:849–854Google Scholar
  23. Kuroki M, Aoyama J, Miller MJ, Wouthuyzen S, Arai T, Tsukamoto K (2006) Contrasting patterns of growth and migration of tropical anguillid leptocephali in the western Pacific and Indonesian Seas. Mar Ecol Prog Ser 309:233–246CrossRefGoogle Scholar
  24. Ling YJ, Iizuka Y, Tzeng WN (2005) Decreased Sr/Ca ratios in the otoliths of two marine eels, Gymnothorax reticularis and Muraenesox cinereus, during metamorphosis. Mar Ecol Prog Ser 304:201–206CrossRefGoogle Scholar
  25. Marquet G, Séret B, Lecomte-Finiger R (1997) Inventaires comparés des poissons des eaux intérieures de trois îles océaniques tropicales de l’Indo-Pacifique (la Réunion, la Nouvelle-Calédonie et Tahiti). Cybium 21(suppl):27–34 (in French with English abstract)Google Scholar
  26. McCosker JE, Boseto D, Jenkins A (2007) Redescription of Yirrkala gjellerupi, a poorly known freshwater Indo-Pacific snake eel (Anguilliformes: Ophichthidae). Pac Sci 61:141–144CrossRefGoogle Scholar
  27. McDowall RM (1987) The occurrence and distribution of diadromy among fishes. In: Dadswell MJ, Klauda RJ, Moffitt CM, Saunders RL, Rulifson RA, Cooper JE (eds) American Fisheries Society, Symposium 1, Bethesda, Maryland, pp 1–13Google Scholar
  28. McDowall RM (1997) The evolution of diadromy in fishes (revisited) and its place in phylogenetic analysis. Rev Fish Biol Fish 7:443–462CrossRefGoogle Scholar
  29. Miller MJ, Tsukamoto K (2004) An introduction to leptocephali: biology and identification. Ocean Research Institute, University of Tokyo, TokyoGoogle Scholar
  30. Nelson JS (2006) Fishes of the world, 4th edn. Wiley, HobokenGoogle Scholar
  31. Randall JE (2005) Reef and shore fishes of the South Pacific, New Caledonia to Tahiti and the Pitcairn Islands. Univ. Hawai’i Press, Honolulu, 707 pGoogle Scholar
  32. Reece JS, Bowen BW, Smith DG, Larson A (2010) Molecular phylogenetics of moray eels (Muraenidae) demonstrates multiple origins of a shell-crushing jaw (Gymnomuraena, Echidna) and multiple colonizations of the Atlantic Ocean. Mol Phylogenet Evol 57:829–835PubMedCrossRefGoogle Scholar
  33. Secor DH, Rooker JR (2000) Is otolith strontium a useful scalar of life cycles in estuarine fishes? Fish Res 46:359–371CrossRefGoogle Scholar
  34. Tesch FW (2003) The eel. Blackwell Publishing, OxfordCrossRefGoogle Scholar
  35. Tsukamoto K, Arai T (2001) Facultative catadromy of the eel Anguilla japonica between freshwater and seawater habitats. Mar Ecol Prog Ser 220:265–276CrossRefGoogle Scholar
  36. Tsukamoto K, Nakai I, Tesch F-W (1998) Do all freshwater eels migrate? Nature 396:635–636CrossRefGoogle Scholar
  37. Tsukamoto K, Aoyama J, Miller MJ (2002) Migration, speciation and the evolution of diadromy in anguillid eels. Can J Fish Aquat Sci 59:1989–1998CrossRefGoogle Scholar
  38. Tsukamoto K, Miller MJ, Kotake A, Aoyama J, Uchida K (2009) The origin of diadromous fish migration: the random escapement hypothesis. In: Haro AJ, Smith KL, Rulifson RA, Moffitt CM, Klauda RJ, Dadswell MJ, Cunjak RA, Cooper JE, Beal KL, Avery TS (eds) Challenges for diadromous fishes in a dynamic global environment. American Fisheries Society Symposium 69, Bethesda, pp 45–61Google Scholar
  39. Tzeng WN (1996) Effects of salinity and ontogenetic movements on strontium: calcium ratios in the otoliths of Japanese eel, Anguilla japonica Temminck and Schlegel. J Exp Mar Biol Ecol 199:111–122CrossRefGoogle Scholar
  40. Ward AB, Azizi E (2004) Convergent evolution of the head retraction escape response in elongate fishes and amphibians. Zoology 107:205–217PubMedCrossRefGoogle Scholar
  41. Watanabe S, Aoyama J, Tsukamoto K (2004) Reexamination of Ege’s (1939) use of taxonomic characters of the genus Anguilla. Bull Mar Sci 74:337–351Google Scholar
  42. Watanabe S, Aoyama J, Tsukamoto K (2009) A new species of freshwater eel, Anguilla luzonensis (Teleostei: Anguillidae) from Luzon Island of the Philippines. Fish Sci 75:387–392CrossRefGoogle Scholar
  43. Weber M, de Beaufort LF (1916) Fishes of the Indo-Australian archipelago. Vol 3 Ostarophysi: II Cyprinoidea, Apodes, Synbranchi. EJ Brill, Leiden, 455 ppGoogle Scholar
  44. Yagi Y, Kondo N, Kinoshita I, Fujita S (2010) Late-stage metamorphosing Conger myriaster leptocephali collected in a river estuary of Ariake Bay, Japan. Ichthyol Res 57:310–313CrossRefGoogle Scholar
  45. Yokouchi K (2010) Studies on phenotypic plasticity in catadromous life-histories of Japanese eel in the Hamana Lake system, Japan. PhD thesis, The University of Tokyo, TokyoGoogle Scholar
  46. Yokouchi K, Fukuda N, Shirai K, Aoyama J, Daverat F, Tsukamoto K (2011) Time lag of the response on the otolith strontium/calcium ratios of the Japanese eel, Anguilla japonica to changes in strontium/calcium ratios of ambient water. Environ Biol Fish 92:469–478CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Katsumi Tsukamoto
    • 1
  • Shun Watanabe
    • 1
    • 3
  • Mari Kuroki
    • 2
  • Jun Aoyama
    • 1
  • Michael J. Miller
    • 1
  1. 1.Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan
  2. 2.The University Museum, The University of TokyoBunkyoJapan
  3. 3.College of Bioresource SciencesNihon UniversityFujisawa-shiJapan

Personalised recommendations