Skip to main content
Log in

Geographic influences on fine-scale, hierarchical population structure in northern Canadian populations of anadromous Arctic Char (Salvelinus alpinus)

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Assessments of fine-scale population structure in natural populations are important for understanding aspects of ecology, life history variation and evolutionary history and can provide novel insights into resource management. Although Arctic char, Salvelinus alpinus, represent one of the most culturally and commercially important salmonids in the Canadian Arctic, fine-scale assessments of genetic structure in northern populations of this species are rare. In this study, we assessed population structure in anadromous Arctic char from Cumberland Sound in Canada’s Nunavut territory using 18 microsatellite loci. Specifically, we aimed at identifying potential habitat and landscape/geographic features influencing genetic variation and population structure and resolving potential barriers to gene flow. Overall population structure was moderate (global FST and Jost’s D of 0.042 and 0.236 respectively) and significant among all sampling locations. Habitat and landscape/geographic features, with the exception of fluvial (shoreline) distance, appeared to have little influence on genetic variation and population structure. Bayesian clustering revealed a hierarchical model of population structure, in which the 14 sampling locations were nested within two distinct clusters corresponding to the north and south shores of Cumberland Sound. Both isolation-by-distance analysis and calculations of mean dispersal distance suggest dispersal and gene flow is highest among proximate locations. Finally, several putative barriers to gene flow were identified and one, a putative barrier separating north and south Cumberland Sound, was consistent with the hierarchical STRUCTURE results. Our results suggest that the current river-specific management of commercially harvested Arctic char is appropriate. Overall, we provide further insights into the evolution of genetic variation and population structure in iteroparous, Arctic salmonids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allendorf FW, Leary RF (1988) Conservation and distribution of genetic variation in a polytypic species, the cutthroat trout. Conserv. Biol 2:170–184

    Google Scholar 

  • Andersen LW, Born EW, Doidge DW, GJertz I, Wiig O, Waples RS (2009) Genetic signals of historic and recent migration between sub-populations of Atlantic walrus Odobenus rosmarus rosmarus west and east of Greenland. Endanger Species Res 9:197–211

    Google Scholar 

  • Andre C et al (2010) Detecting population structure in a high gene-flow species, Atlantic herring (Clupea harengus): direct, simultaneous evaluation of neutral vs putatively selected loci. Heredity 106:270–280

    PubMed  PubMed Central  Google Scholar 

  • Arbour JH, Hardie DC, Hutchings JA (2011) Morphometric and genetic analyses of two sympatric morphs of Arctic char (Salvelinus alpinus) in the Canadian High Arctic. Can J Zool 89(1):19–30

    Google Scholar 

  • Balding DJ, Nichols RA (1995) A method for quantifying differentiation between populations at multi-allelic loci and its implications for investigating identify and paternity. Genetica 96:3–12

    PubMed  CAS  Google Scholar 

  • Barrett RDH, Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 23(1):38–44

    PubMed  Google Scholar 

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations using a coalescent approach. Proc Natl Acad Sci U S A 98:4563–4568

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bernatchez L, Dodson JJ, Boivin S (1989) Population bottlenecks: influence on mitochondrial DNA diversity and its effect in coregonine stock discrimination. J Fish Biol 35:233–244

    Google Scholar 

  • Bernatchez L, Dempson JB, Martin S (1998) Microsatellite gene diversity analysis in anadromous Arctic char, Salvelinus alpinus, from Labrador, Canada. Can J Fish Aquat Sci 55:1264–1272

    Google Scholar 

  • Bowcock AM, Ruizlinares A, Tomfohrde J et al (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457

    PubMed  CAS  Google Scholar 

  • Brunner PC, Douglas MR, Osinov A, Wilson CC, Bernatchez L (2001) Holartic phyogeography of Arctic charr (Salvelinus alpinus L.) inferred from mitochondrial DNA sequences. Evolution 55(3):573–586

    PubMed  CAS  Google Scholar 

  • Caldera EJ, Bolnick DI (2008) Effects of colonization history and landscape structure on genetic variation within and among threespine stickleback (Gasterosteus aculeatus) populations in a single watershed. Evol Ecol Res 10(4):575–598

    Google Scholar 

  • Castric V, Bernatchez L (2003) The rise and fall of isolation by distance in the anadromous brook charr (Salvelinus fontinalis Mitchell). Genetics 163:983–996

    PubMed  PubMed Central  Google Scholar 

  • Castric V, Bonney F, Bernatchez L (2001) Landscape structure and hierarchical genetic diversity in the brook charr, Salvelinus fontinalis. Evolution 55(5):1016–1028

    PubMed  CAS  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet 19(3 Pt. 1):233–257

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cook BD, Kennard MJ, Real K, Pusey BJ, Hughes JM (2011) Landscape genetic analysis of the tropical freshwater fish Mogurnda mogurnda (Eleotridae) in a monsoonal river basin: importance of hydrographic factors and population history. Freshw Biol 56(5):812–827

    Google Scholar 

  • Cook JA, Brochmann C, Talbot SL, Fedorov V, Taylor EB, Väïnölä R et al (2012) Genetic perspectives on Arctic biodiversity. Chapter 7. In: Meltofte H (ed) 2013. Arctic biodiversity assessment. Status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna, Akureyri

    Google Scholar 

  • Costello AB, Down TE, Pollard SM, Pacas CJ, Taylor EB (2003) The influence of history and contemporary stream hydrology on the evolution of genetic diversity within species: and examination of microsatellite DNA variaton in bull trout, Salvelinus confluentus, (Pisces: Salmonidae). Evolution 57(2):328–344

    Google Scholar 

  • Crispo E, Hendry A (2005) Does time since colonization influence isolation by distance? A meta-analysis. Conserv Genet 6:665–682

    Google Scholar 

  • Crispo E, Moore JS, Lee-Yaw JA, Gray SM, Haller BC (2011) Broken barriers: human-induced changes to gene flow and introgression in animals. Bioessays 33(7):508–518

    PubMed  Google Scholar 

  • Cushman SA, Landguth EL (2010) Spurious correlations and inference in landscape genetics. Mol Ecol 19:3592–3602

    PubMed  Google Scholar 

  • Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168:486–499

    PubMed  Google Scholar 

  • Day AC, de March B (2004) Status of Cambridge Bay anadromous Arctic Char stocks. Can Sci Advis Sec Res Doc 2004/052. 85 p

  • Dempson JB, Kristofferson AH (1987) Spatial and temporal aspects of the ocean migration of anadromous Arctic char. pp. 340–357. In: Dadswell MJ, Klauda RJ, Moffitt CM, Saunders RL, Rulifson RA, Cooper JE (eds) Common strategies of anadromous and catadromous fishes. American Fisheries Society Symposium. Bethesda, Maryland

  • Dillane E et al (2008) Demographics and landscape features determine intrariver population structure in Atlantic salmon (Salmo salar L.): the case of the River Moy in Ireland. Mol Ecol 17(22):4786–4800

    PubMed  CAS  Google Scholar 

  • Dionne M, Caron F, Dodson JJ, Bernatchez L (2008) Landscape genetics and hierarchical genetic structure in Atlantic salmon: the interaction of gene flow and local adaptation. Mol Ecol 17(10):2382–2396

    PubMed  CAS  Google Scholar 

  • Earl DA, Vonholdt BM (2012) Structure Harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Google Scholar 

  • Elmer KR, Recknagel H, Thompson A, Meyer A (2012) Asymmetric admixture and morphological variability at a suture zone: parapatric burbot subspecies (Pisces) in the MacKenzie River Basin, Canada. Hydrobiologia 683:217–229

    CAS  Google Scholar 

  • Evanno G, Regnault S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinforma 1:47–50

    CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) user manual. Department of Genetics, University of Washington, Seattle

    Google Scholar 

  • Foll M, Gaggiotti O (2006) Identifying the environmental factors that determine the genetic structure of populations. Genetics 174(2):875–891

    PubMed  CAS  PubMed Central  Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10(6):1500–1508

    Google Scholar 

  • Gaggiotti OE et al (2009) Disentangling the effects of evolutionary, demographic, and environmental factors influencing genetic structure of natural populations: Atlantic herring as a case study. Evolution 63(11):2939–2951

    PubMed  Google Scholar 

  • Galpern P, Manseau M, Wilson PJ (2012) Grains of connectivity: analysis at multiple spatial scales in landscape genetics. Mol Ecol 21:3996–4009

    PubMed  Google Scholar 

  • Garant D, Forde SE, Hendry AP (2007) The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct Ecol 21(3):434–443

    Google Scholar 

  • Gerlach G, Jueterbock A, Kraemer P, Deppermann J, Harmand P (2010) Calculations of population differentiation based on G(ST) and D: forget G(ST) but not all of statistics! Mol Ecol 19(18):3845–3852

    PubMed  Google Scholar 

  • Gomez-Uchida D, Knight TW, Ruzzante DE (2009) Interaction of landscape and life history attributes on genetic diversity, neutral divergence and gene flow in a pristine community of salmonids. Mol Ecol 18(23):4854–4869

    PubMed  Google Scholar 

  • Goudet J (2002) FSTAT: a program to estimate and test gene diversities and fixation indices. Version 2.9.3.2. Available at http://www.unil.ch/izea/softwares/fstat.html

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48:361–372

    PubMed  CAS  Google Scholar 

  • Guy TJ, Gresswell RE, Banks MA (2008) Landscape-scale evaluation of genetic structure among barrier-isolated populations of coastal cutthroat trout, Oncorhynchus clarkii clarkii. Can J Fish Aquat Sci 65(8):1749–1762

    Google Scholar 

  • Gyselman EC (1994) Fidelity of Anadromous Arctic Char (Salvelinus alpinus) to Nauyuk Lake, Nwt, Canada. Can J Fish Aquat Sci 51(9):1927–1934

    Google Scholar 

  • Harris LN, Taylor EB (2010a) Genetic population structure of broad whitefish, Coregonus nasus, from the Mackenzie River, Northwest Territories: implications for subsistence fishery management. Can J Fish Aquat Sci 67(6):905–918

    CAS  Google Scholar 

  • Harris LN, Taylor EB (2010b) Pleistocene glaciations and contemporary genetic diversity in a Beringian fish, the broad whitefish, Coregonus nasus (Pallas): inferences from microsatellite DNA variation. J Evol Biol 23(1):72–86

    PubMed  CAS  Google Scholar 

  • Heath DD, Pollard S, Herbinger C (2001) Genetic structure and relationships among steelhead trout (Oncorhynchus mykiss) populations in British Columbia. Heredity 86:618–627

    PubMed  CAS  Google Scholar 

  • Hendry AP, Castric V, Kinnison MT, Quinn TP (2004) The evolution of philopatry and dispersal: homing versus straying in salmonids. In: Hendry AP, Stearns SC (eds) Evolution illuminated: Salmon and their relatives. Oxford University Press, Oxford, pp 52–91

    Google Scholar 

  • Holderegger R, Kamm U, Gugerli F (2006) Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landsc Ecol 21(6):797–807

    Google Scholar 

  • Holt RD, Gomulkiewicz R (1997) How does immigration influence local adaptation? A reexamination of a familiar paradigm. Am Nat 149(3):563–572

    Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9(5):1322–1332

    PubMed  PubMed Central  Google Scholar 

  • Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative Influences of gene flow and drift on the distribution of genetic variability. Evolution 53(6):1898–1914

    Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14):1801–1806

    PubMed  CAS  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genetics 6: 13. v.3.23 http://ibdws.sdsu.edu/

  • Johnson L (1980) The Arctic charr. In: Balon EK (ed) Charrs: salmonid fishes of the genus Salvelinus. Dr. W. Junk bv Publishers, The Hague, pp 15–98

    Google Scholar 

  • Jost L (2008) G(ST) and its relatives do not measure differentiation. Mol Ecol 17(18):4015–4026

    PubMed  Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5(1):187–189

    CAS  Google Scholar 

  • King TL, Kalinowski ST, Schill WB, Spidle AP, Lubinski BA (2001) Population structure of Atlantic salmon (Salmo salar L.): a wide range perspective of microsatellite DNA variation. Mol Ecol 10:807–821

    PubMed  CAS  Google Scholar 

  • Kristofferson AH, Berkes F (2005) Adaptive co-management of Arctic char in Nunavut Territory. In: Berkes F, Huebert R, Fast H, Manseau M, Diduck A (eds) Breaking ice: renewable resource and ocean management in the Canadian North. University of Calgary Press, Calgary, pp 249–268

    Google Scholar 

  • Kristofferson AH, McGowan DK, Carder GW (1984) Management of the commercial fishery for anadromous Arctic charr in the Cambridge Bay area, Northwest Territories, Canada. In: Johnson L, Burns BL (eds) Biology of the Arctic charr. University of Manitoba Press, Winnipeg, pp 447–461, Proceedings of the International Symposium on Arctic charr, Winnipeg, May 1981

    Google Scholar 

  • Leclerc E, Mailhot Y, Mingelbier M, Bernatchez L (2008) The landscape genetics of yellow perch (Perca flavescens) in a large fluvial ecosystem. Mol Ecol 17(7):1702–1717

    PubMed  CAS  Google Scholar 

  • Lindsay CC, McPhail JD (1986) Zoogeography of fishes of the Yukon and Mackenzie basins. In: Hocutt CH, Wiley EO (eds) The Zoogeography of North American Freshwater Fishes. Wiley, New York, pp 639–674

    Google Scholar 

  • Loewen TN, Gillis D, Tallman RF (2009) Ecological niche specialization inferred from morphological variation and otolith strontium of Arctic charr Salvelinus alpinus L. found within open lake systems of southern Baffin Island, Nunavut, Canada. J Fish Biol 75(6):1473–1495

    PubMed  CAS  Google Scholar 

  • Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12(1):228–237

    Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18(4):189–197

    Google Scholar 

  • Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76(2):173–190

    PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • McCairns RJS, Bernatchez L (2008) Landscape genetic analyses reveal cryptic population structure and putative selection gradients in a large-scale estuarine environment. Mol Ecol 17(17):3901–3916

    PubMed  Google Scholar 

  • McCusker MR, Bentzen P (2011) Positive relationships between genetic diversity and abundance in fishes. Mol Ecol 19(22):4852–4862

    Google Scholar 

  • McDowall RM (2008) Why are so many boreal freshwater fishes anadromous? Confronting ‘conventional wisdom’. Fish Fish 9(2):208–213

    Google Scholar 

  • Meirmans PG (2012) The trouble with isolation by distance. Mol Ecol 21(12):2839–2846

    PubMed  Google Scholar 

  • Meirmans PG, Hedrick PW (2011) Assessing population structure: F-ST and related measures. Mol Ecol Resour 11(1):5–18

    PubMed  Google Scholar 

  • Monmonier M (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geogr Anal 3:245–261

    Google Scholar 

  • Moore JW (1975) Distribution, movements, and mortality of anadromous Arctic char, Salvelinus alpinus L., in the Cumberland Sound area of Baffin Island. J Fish Biol 7(3):339–348

    Google Scholar 

  • Moore J-S, Harris LN, Tallman RF, Taylor EB (2013a) The interplay between dispersal and gene flow in anadromous Arctic char (Salvelinus alpinus): implications for potential for local adaptation and for fisheries management in a high Arctic population complex. Can J Fish Aquat Sci 70:1327–1338

    Google Scholar 

  • Moore J-S, Loewen TN, Harris LN, Tallman RF (2013b) Genetic analysis of sympatric migratory ecotypes of Baffin Island Arctic char Salvelinus alpinus: alternative mating tactics or reproductively isolated strategies? J Fish Biol

  • Narum SR (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet 7(5):783–787

    CAS  Google Scholar 

  • Neville HM, Dunham JB, Peacock MM (2006a) Landscape attributes and life history variability shape genetic structure of trout populations in a stream network. Landsc Ecol 21(6):901–916

    Google Scholar 

  • Neville HM, Isaak DJ, Dunham JB, Thurow RF, Rieman BE (2006b) Fine-scale natal homing and localized movement as shaped by sex and spawning habitat in Chinook salmon: insights from spatial autocorrelation analysis of individual genotypes. Mol Ecol 15(14):4589–4602

    PubMed  CAS  Google Scholar 

  • Neville H, Dunham J, Rosenberger A, Umek J, Nelson B (2009) Influences of wildfire, habitat size, and connectivity on trout in headwater streams revealed by patterns of genetic diversity. Trans Am Fish Soc 138(6):1314–1327

    Google Scholar 

  • Nielsen JL, Byrne A, Graziano SL, Kozfkay CC (2009) Steelhead genetic diversity at multiple spatial scales in a managed basin: Snake River, Idaho. N Am J Fish Manag 29(3):680–701

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012) vegan: Community Ecology Package. R package version 2.0-3. http://CRAN.R-project.org/package=vegan

  • Ostergren J, Nilsson J (2012) Importance of life-history and landscape characteristics for genetic structure and genetic diversity of brown trout (Salmo trutta L.). Ecol Freshw Fish 21(1):119–133

    Google Scholar 

  • Palsboll PJ, Berube M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22(1):11–16

    PubMed  Google Scholar 

  • Palstra FP, Ruzzante DE (2010) A temporal perspective on population structure and gene flow in Atlantic salmon (Salmo salar) in Newfoundland, Canada. Can J Fish Aquat Sci 67(2):225–242

    Google Scholar 

  • Palstra FP, O’Connell MF, Ruzzante DE (2007) Population structure and gene flow reversals in Atlantic salmon (Salmo salar) over contemporary and long-term temporal scales: effects of population size and life history. Mol Ecol 16(21):4504–4522

    PubMed  CAS  Google Scholar 

  • Peery MZ et al (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21(14):3403–3418

    PubMed  Google Scholar 

  • Perez-Espona S, Perez-Barberia FJ, Jiggins CD, Gordon IJ, Pemberton JM (2010) Variable extent of sex-biased dispersal in a strongly polygynous mammal. Mol Ecol 19(15):3101–3113

    PubMed  CAS  Google Scholar 

  • Perrier C, Guyomard R, Bagliniere JL, Evanno G (2011) Determinants of hierarchical genetic structure in Atlantic salmon populations: environmental factors vs. anthropogenic influences. Mol Ecol 20(20):4231–4245

    PubMed  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90(4):502–503

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  PubMed Central  Google Scholar 

  • Raeymaekers JAM, Lens L, Van den Broeck F, Van Dongen S, Volckaert FAM (2012) Quantifying population structure on short timescales. Mol Ecol 21(14):3458–3473

    PubMed  Google Scholar 

  • Rambaut A (2009) FigTree. Version 1.3. 1. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. Available online: http://tree.bio.ed.ac.uk/software/figtree

  • R Development Core Team (2012) R: a language and environment for statistical computing. Vienna, Austria

  • Reist JD et al (2006) An overview of effects of climate change on selected Arctic freshwater and anadromous fishes. Ambio 35(7):381–387

    Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4(1):137–138

    Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145(4):1219–1228

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rousset F (2008) GENEPOP ’ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8(1):103–106

    PubMed  Google Scholar 

  • Roux MJ, Tallman RF, Lewis CW (2011) Small-scale Arctic charr Salvelinus alpinus fisheries in Canada’s Nunavut: management challenges and options. J Fish Biol 79(6):1625–1647

    PubMed  CAS  Google Scholar 

  • Schindler DE, Hilborn R, Chasco B, Boatright CP, Quinn TP, Rogers LA , Webster MS (2010) Population diversity and the portfolio effect in an exploited species. Nature 465:609–613

    Google Scholar 

  • Schluter D (1996) Ecological speciation in postglacial fishes. Philos Trans R Soc B 1341:807–814

    Google Scholar 

  • Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22(1):25–33

    PubMed  Google Scholar 

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9(5):615–629

    PubMed  Google Scholar 

  • Spares AD, Stokesbury MJW, O’Dor RK, Dick TA (2012) Temperature, salinity and prey availability shape the marine migration of Arctic char, Salvelinus alpinus, in a macrotidal estuary. Mar Biol 159(8):1633–1646

    Google Scholar 

  • Storfer A et al (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98(3):128–142

    PubMed  CAS  Google Scholar 

  • Tamkee P, Parkinson E, Taylor EB (2010) The influence of Wisconsinan glaciation and contemporary stream hydrology on microsatellite DNA variation in rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci 67:919–935

    CAS  Google Scholar 

  • Taylor EB, Stamford MD, Baxter JS (2003) Population subdivision in westslope cutthroat trout (Oncorhynchus clarki lewisi) at the northern periphery of its range: evolutionary inferences and conservation implications. Mol Ecol 12:2609–2622

    PubMed  CAS  Google Scholar 

  • Taylor EB, Lowery E, Lilliestrale A, Elz A, Quinn TP (2008) Genetic analysis of sympatric char populations in western Alaska: Arctic char (Salvelinus alpinus) and Dolly Varden (Salvelinus malma) are not two sides of the same coin. J Evol Biol 21(6):1609–1625

    PubMed  CAS  Google Scholar 

  • Tonteri A, Veselov AJ, Zubchenko AV, Lumme J, Primmer CR (2009) Microsatellites reveal clear genetic boundaries among Atlantic salmon (Salmo salar) populations from the Barents and White seas, northwest Russia. Can J Fish Aquat Sci 66:117–135

    Google Scholar 

  • Turgeon J, Bernatchez L (2001a) Clinal variation at microsatellite loci reveals historical secondary intergredation between glacial races of Coregonus artedi (Teleostei: Coregoninae). Evolution 55(11):2274–2286

    PubMed  CAS  Google Scholar 

  • Turgeon J, Bernatchez L (2001b) Mitochondrial DNA phylogeography of lake cisco (Coregonus artedi): evidence supporting extensive secondary contacts between two glacial races. Mol Ecol 10:987–1001

    PubMed  CAS  Google Scholar 

  • Vaha JP, Erkinaro J, Niemela E, Primmer CR (2007) Life-history and habitat features influence the within-river genetic structure of Atlantic salmon. Mol Ecol 16(13):2638–2654

    PubMed  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538

    Google Scholar 

  • Vidal O, Garcia-Marin JL (2011) Ecological genetics of freshwater fish: short review of the genotype-phenotype connection. Anim Biodivers Conserv 34(2):309–317

    Google Scholar 

  • Wang J, Santure AW (2009) Parentage and sibship inference from multilocus genotype data under polygamy. Genetics 181:1579–1594

    PubMed  CAS  PubMed Central  Google Scholar 

  • Waples RS (1991) Pacific salmon, Oncorhynchus spp. and the definition of a ‘species’ under the Endangered Species Act. Mar Fish Rev 53:11–22

    Google Scholar 

  • Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. Heredity 89(5):438–450

    Google Scholar 

  • Warnock WG, Rasmussen JB, Taylor EB (2010) Genetic clustering methods reveal bull trout (Salvelinus confluentus) fine-scale population structure as a spatially nested hierarchy. Conserv Genet 11:1421–1433

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38(6):1358–1370

    Google Scholar 

  • Whiteley AR, Hastings K, Wenburg JK, Frissell CA, Martin JC, Allendorf FW (2010) Genetic variation and effective population size in isolated populations of coastal cutthroat trout. Conserv Genet 11:1929–1943

    Google Scholar 

  • Wilson CC, Hebert PDN, Reist JD, Dempson JB (1996) Phylogeography and postglacial dispersal of Arctic charr Salvelinus alpinus in North America. Mol Ecol 5:187–197

    Google Scholar 

  • Wright S (1946) Isolation by distance under diverse systems of mating. Genetics 31:39–59

    PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank the Pangnirtung Hunters and Trappers Association for their support on this study. More specifically, the following people from Pangirtung provided either help or useful information that made field collections possible: P. Qappik, J. Maniapik, S. Sowdloapik, P. Kilabuk, J. Akpailaluk, J. Ishulutak, T. Nauyuk, J. Shoapik, N. Shoapik, J. Kakee, and D. Nakashuk. S. Wiley also provided essential help in the field and with the logistics. We thank R. Bajno for helpful discussions while the manuscript was being prepared and two anonymous reviewers for critically reviewing the manuscript. Funding for the fieldwork was provided by the Polar Continental Shelf, Indian and Northern Affairs Canada (through two Northern Scientific Training Program scholarships awarded to JSM), the Natural Sciences and Engineering Research Council (NSERC) of Canada (through a Northern Research Internship awarded to JSM and Discovery and Equipment Grants awarded to EBT) and from Fisheries and Oceans Canada. JSM was supported by an NSERC Canada Graduate Scholarship, a Bourse de Doctorat en Recherche from the Fond Québécois sur la Nature et les Technologies, and a 4 Year Scholarship from the University of British Columbia. This work was approved by the Animal Care Committee of Fisheries and Oceans Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Les N. Harris.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix 1

(DOC 26.0 kb)

Appendix 2

(DOC 59.0 kb)

Appendix 3

(DOC 68.0 kb)

Appendix 4

(DOC 151 kb)

Appendix 5

(DOC 26.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, L.N., Moore, JS., Galpern, P. et al. Geographic influences on fine-scale, hierarchical population structure in northern Canadian populations of anadromous Arctic Char (Salvelinus alpinus). Environ Biol Fish 97, 1233–1252 (2014). https://doi.org/10.1007/s10641-013-0210-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-013-0210-y

Keywords

Navigation