Environmental Biology of Fishes

, Volume 97, Issue 5, pp 505–513 | Cite as

Day and night drift-feeding by juvenile salmonids at low water temperatures

  • Johan WatzEmail author
  • John Piccolo
  • Eva Bergman
  • Larry Greenberg


Drift-feeding salmonids in boreal streams face temperatures below physical optima for extensive periods of the year. Because juvenile salmonids react to low water temperatures by becoming nocturnal, knowledge about their foraging ability at low light intensities in cold water is needed to accurately estimate energy intake during non-summer conditions. In a laboratory stream channel, we studied temperature effects on the drift-feeding behaviour of juvenile Atlantic salmon, brown trout, and European grayling in simulated daylight and moonlight at temperatures ranging from 2 °C to 11 °C. Prey capture probability was positively related to temperature, but the temperature dependence did not agree with predictions of the Metabolic Theory of Ecology. Furthermore, reaction distance was positively related to temperature for the three species, which may be one of the underlying mechanisms responsible for the temperature effects on prey capture probability. Overall, the three species had similar capture rates at the different temperature and light levels, although there were species differences. European grayling had a slightly higher prey capture probability than brown trout, and brown trout had a shorter reaction distance than Atlantic salmon and European grayling. These results have implications for both energetics-based drift-foraging theory and for studies of winter ecology.


Foraging Grayling Reaction distance Salmon Trout Winter 



Funding was provided by the Department of Environmental and Life Sciences, Karlstad University. The study was approved by the Animal Ethical Board of Sweden (reference 341–2009).


  1. Ali MA (1961) Histophysiological studies on juvenile Atlantic salmon (Salmo salar) retina. Can J Zool 39:511–525. doi: 10.1139/z61-055 CrossRefGoogle Scholar
  2. Allen AP, Gillooly JF (2007) The mechanistic basis of the metabolic theory of ecology. Oikos 116:1073–1077. doi: 10.1111/j.0030-1299.2007.16079.x CrossRefGoogle Scholar
  3. Allen DM, Loew ER, McFarland WN (1982) Seasonal change in the amount of visual pigment in the retinae of fish. Can J Zool 60:281–287. doi: 10.1139/z82-037 CrossRefGoogle Scholar
  4. Allen DM, McFarland WN, Munz FW, Poston HA (1973) Changes in the visual pigments of trout. Can J Zool 51:901–914. doi: 10.1139/z73-137 PubMedCrossRefGoogle Scholar
  5. Amundsen PA, Gabler HM, Herfindal T, Riise LS (2000) Feeding chronology of Atlantic salmon parr in subarctic rivers: consistency of nocturnal feeding. J Fish Biol 56:676–686. doi: 10.1006/jfbi.1999.1187 CrossRefGoogle Scholar
  6. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789. doi: 10.1890/03-9000 CrossRefGoogle Scholar
  7. Clarke A (2004) Is there a universal temperature dependence of metabolism? Funct Ecol 18:252–256. doi: 10.1111/j.0269-8463.2004.00842.x CrossRefGoogle Scholar
  8. Confer JL, Howick GL, Corzette MH, Kramer SL, Fitzgibbon S, Landesberg R (1978) Visual predation by plaktivores. Oikos 31:27–37. doi: 10.2307/3543380 CrossRefGoogle Scholar
  9. DeVries MS, Wainwright PC (2006) The effects of acute temperature change on prey capture kinematics in largemouth bass, Micropterus salmoides. Copeia 2006:437–444. doi: 10.1643/0045-8511(2006)2006[437:TEOATC]2.0.CO;2 CrossRefGoogle Scholar
  10. Elliott JM (2002) Shadow competition in wild juvenile sea-trout. J Fish Biol 61:1268–1281. doi: 10.1111/j.1095-8649.2002.tb02470.x CrossRefGoogle Scholar
  11. Elliott JM, Hurley MA (1997) A functional model for maximum growth of Atlantic Salmon parr, Salmo salar, from two populations in northwest England. Funct Ecol 11:592–603. doi: 10.1046/j.1365-2435.1997.00130.x CrossRefGoogle Scholar
  12. Elliott JM, Hurley MA (1998) A new functional model for estimating the maximum amount of invertebrate food consumed per day by brown trout, Salmo trutta. Freshwater Biol 39:339–349. doi: 10.1046/j.1365-2427.1998.00288.x CrossRefGoogle Scholar
  13. Englund G, Öhlund G, Hein CL, Diehl S (2011) Temperature dependence of the functional response. Ecol Lett 14:914–921. doi: 10.1111/j.1461-0248.2011.01661.x PubMedCrossRefGoogle Scholar
  14. Fraser NHC, Metcalfe NB (1997) The costs of becoming nocturnal: feeding efficiency in relation to light intensity in juvenile Atlantic salmon. Funct Ecol 11:385–391. doi: 10.1046/j.1365-2435.1997.00098.x CrossRefGoogle Scholar
  15. Fraser NHC, Metcalfe NB, Thorpe JE (1993) Temperature-dependent switch between diurnal and nocturnal foraging in salmon. P Roy Soc Lond B Bio 252:135–139CrossRefGoogle Scholar
  16. Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251. doi: 10.1126/science.1061967 PubMedCrossRefGoogle Scholar
  17. Graham WD, Thorpe JE, Metcalfe NB (1996) Seasonal current holding performance of juvenile Atlantic salmon in relation to temperature and smolting. Can J Fish Aquat Sci 53:80–86. doi: 10.1139/f95-167 CrossRefGoogle Scholar
  18. Hartman GF (1965) The role of behavior in the ecology and interaction of underyearling coho salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdneri). J Fish Res Board Can 22:1035–1081. doi: 10.1139/f65-095 CrossRefGoogle Scholar
  19. Harwood AJ, Metcalfe NB, Armstrong JD, Griffiths SW (2001) Spatial and temporal effects of interspecific competition between Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) in winter. Can J Fish Aquat Sci 58:1133–1140. doi: 10.1139/f01-061 CrossRefGoogle Scholar
  20. Harwood AJ, Metcalfe NB, Griffiths SW, Armstrong JD (2002) Intra- and inter-specific competition for winter concealment habitat in juvenile salmonids. Can J Fish Aquat Sci 59:1515–1523. doi: 10.1139/f02-119 CrossRefGoogle Scholar
  21. Heggenes J, Dokk JG (2001) Contrasting temperatures, waterflows, and light: seasonal habitat selection by young Atlantic salmon and brown trout in a boreonemoral river. Regul Rivers 17:623–635. doi: 10.1002/rrr.620 CrossRefGoogle Scholar
  22. Heggenes J, Krog OMW, Lindas OR, Dokk JG, Bremnes T (1993) Homeostatic behavioral responses in a changing environment - brown trout (Salmo trutta) become nocturnal during winter. J Anim Ecol 62:295–308CrossRefGoogle Scholar
  23. Henderson MA, Northcote TG (1985) Visual prey detection and foraging in sympatric cutthroat trout (Salmo clarki clarki) and Dolly Varden (Salvelinus malma). Can J Fish Aquat Sci 42:785–790. doi: 10.1139/f85-100 CrossRefGoogle Scholar
  24. Hill J, Grossman GD (1993) An energetic model of microhabitat use for rainbow trout and rosyside dace. Ecology 74:685–698CrossRefGoogle Scholar
  25. Huusko A et al (2007) Life in the ice lane: the winter ecology of stream salmonids. River Res Appl 23:469–491. doi: 10.1002/rra.999 CrossRefGoogle Scholar
  26. Johansen M et al (2010) Prey availability and juvenile Atlantic salmon feeding during winter in a regulated subarctic river subject to loss of ice cover. Hydrobiologia 644:217–229. doi: 10.1007/s10750-010-0118-x CrossRefGoogle Scholar
  27. Kalleberg H (1958) Observations in a stream tank of territoriality and competition in juvenile salmon and trout (Salmo salar L., and Salmo trutta L.). Inst Fresh Res Drott Rep 39:55–98Google Scholar
  28. Mallet JP, Charles S, Persat H, Auger P (1999) Growth modelling in accordance with daily water temperature in European grayling (Thymallus thymallus L.). Can J Fish Aquat Sci 56:994–1000. doi: 10.1139/f99-031 CrossRefGoogle Scholar
  29. Mazur MM, Beauchamp DA (2003) A comparison of visual prey detection among species of piscivorous salmonids: effects of light and low turbidities. Environ Biol Fish 67:397–405. doi: 10.1023/a:1025807711512 CrossRefGoogle Scholar
  30. Metcalfe NB, Fraser NHC, Burns MD (1999) Food availability and the nocturnal vs. diurnal foraging trade-off in juvenile salmon. J Anim Ecol 68:371–381CrossRefGoogle Scholar
  31. Metcalfe NB, Valdimarsson SK, Fraser NHC (1997) Habitat profitability and choice in a sit-and-wait predator: juvenile salmon prefer slower currents on darker nights. J Anim Ecol 66:866–875CrossRefGoogle Scholar
  32. O’Connor MP et al (2007) Reconsidering the mechanistic basis of the metabolic theory of ecology. Oikos 116:1058–1072. doi: 10.1111/j.0030-1299.2007.15534.x CrossRefGoogle Scholar
  33. Orpwood JE, Griffiths SW, Armstrong JD (2006) Effects of food availability on temporal activity patterns and growth of Atlantic salmon. J Anim Ecol 75:677–685. doi: 10.1111/j.1365-2656.2006.01088.x PubMedCrossRefGoogle Scholar
  34. Piccolo JJ, Hughes HF, Bryant MD (2007) The effects of water depth on prey detection and capture by juvenile coho salmon and steelhead. Ecol Freshw Fish 16:432–441. doi: 10.1111/j.1600-0633.2007.00242.x CrossRefGoogle Scholar
  35. Piccolo JJ, Hughes NF, Bryant MD (2008) Water velocity influences prey detection and capture by drift-feeding juvenile coho salmon (Oncorhynchus kisutch) and steelhead (Oncorhynchus mykiss irideus). Can J Fish Aquat Sci 65:266–275. doi: 10.1139/f07-172 CrossRefGoogle Scholar
  36. Rader RB, Belish T, Young MK, Rothlisberger J (2007) The scotopic visual sensitivity of four species of trout: a comparative study. W N Am Nat 67:524–537. doi: 10.3398/1527-0904(2007)67[524:tsvsof];2 CrossRefGoogle Scholar
  37. Railsback SF, Harvey BC (2011) Importance of fish behaviour in modelling conservation problems: food limitation as an example. J Fish Biol 79:1648–1662. doi: 10.1111/j.1095-8649.2011.03050.x PubMedCrossRefGoogle Scholar
  38. Railsback SF, Harvey BC, Hayse JW, LaGory KE (2005) Tests of theory for diel variation in salmonid feeding activity and habitat use. Ecology 86:947–959. doi: 10.1890/04-1178 CrossRefGoogle Scholar
  39. Rall BC, Brose U, Hartvig M, Kalinkat G, Schwarzmüller F, Vucic-Pestic O, Petchey OL (2012) Universal temperature and body-mass scaling of feeding rates. Philos T Roy Soc B 367:2923–2934. doi: 10.1098/rstb.2012.0242 CrossRefGoogle Scholar
  40. Riley WD, Ives MJ, Pawson MG, Maxwell DL (2006) Seasonal variation in habitat use by salmon, Salmo salar, trout, Salmo trutta and grayling, Thymallus thymallus, in a chalk stream. Fisheries Manag Ecol 13:221–236. doi: 10.1111/j.1365-2400.2006.00496.x CrossRefGoogle Scholar
  41. Ringler NH (1985) Individual and temporal variation in prey switching by brown trout, Salmo trutta. Copeia 4:918–926CrossRefGoogle Scholar
  42. Robinson FW, Tash JC (1979) Feeding by Arizona trout (Salmo apache) and brown trout (Salmo trutta) at different light intensities. Environ Biol Fish 4:363–368. doi: 10.1007/bf00005525 CrossRefGoogle Scholar
  43. Savage VM, Gillooly JF, Brown JH, West GB, Charnov EL (2004) Effects of body size and temperature on population growth. Am Nat 163:429–441PubMedCrossRefGoogle Scholar
  44. Schmidt D, O’Brien WJ (1982) Planktivorous feeding ecology of Arctic grayling (Thymallus arcticus). Can J Fish Aquat Sci 39:475–482CrossRefGoogle Scholar
  45. Tunney TD, Steingrímsson SÓ (2012) Foraging mode variation in three stream-dwelling salmonid fishes. Ecol Freshw Fish 21:570–580. doi: 10.1111/j.1600-0633.2012.00577.x CrossRefGoogle Scholar
  46. Vehanen T, Huusko A (2002) Behaviour and habitat use of young-of-the-year Atlantic salmon (Salmo salar) at the onset of winter in artificial streams. Arch Hydrobiol 154:133–150Google Scholar
  47. Vogel JL, Beauchamp DA (1999) Effects of light, prey size, and turbidity on reaction distances of lake trout (Salvelinus namaycush) to salmonid prey. Can J Fish Aquat Sci 56:1293–1297. doi: 10.1139/f99-071 CrossRefGoogle Scholar
  48. Watz J, Piccolo JJ (2011) The role of temperature in the prey capture probability of drift-feeding juvenile brown trout (Salmo trutta). Ecol Freshw Fish 20:393–399. doi: 10.1111/j.1600-0633.2010.00470.x CrossRefGoogle Scholar
  49. Watz J, Piccolo JJ, Greenberg L, Bergman E (2012) Temperature-dependent prey capture efficiency and foraging modes of brown trout Salmo trutta. J Fish Biol 81:345–350. doi: 10.1111/j.1095-8649.2012.03329.x PubMedCrossRefGoogle Scholar
  50. Webb PW (1978) Temperature effects on acceleration of rainbow trout (Salmo gairdneri). J Fish Res Board Can 35:1417–1422CrossRefGoogle Scholar
  51. Wintzer AP, Motta PJ (2004) The effects ofbtemperature on prey capture kinematics of bluegill (Lepomis macrochirus): implications for feeding studies. Can J Zool 82:794–799. doi: 10.1139/z04-061 CrossRefGoogle Scholar
  52. Zamor RM, Grossman GD (2007) Turbidity affects foraging success of drift-feeding rosyside dace. T Am Fish Soc 136:167–176. doi: 10.1577/t05-316 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Johan Watz
    • 1
    Email author
  • John Piccolo
    • 1
  • Eva Bergman
    • 1
  • Larry Greenberg
    • 1
  1. 1.Department of Environmental and Life SciencesKarlstad UniversityKarlstadSweden

Personalised recommendations