Skip to main content

Advertisement

Log in

Genetic signatures of historical bottlenecks in sympatric lake trout (Salvelinus namaycush) morphotypes in Lake Superior

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Humans have played a significant role in reducing levels of genetic diversity and differentiation of many teleost fishes, leading to homogenization across biological entities. We compare patterns of historical and contemporary genetic structure for three sympatric Great Lake’s lake trout (Salvelinus namaycush) morphs (lean, siscowet, and humper) that differ in patterns of habitat occupancy, susceptibility to overfishing and predation by invasive sea lamprey (Petromyzon marinus). Differential susceptibilities to overfishing and predation were expected to result in different impacts to levels of genetic diversity loss for each morphotype. Genetic data was collected for samples at three points in time: 1948 (pre-collapse), 1959 (collapse) and 1990s (current), corresponding to periods of intensive fishing, mortality due to lamprey and recovery, respectively. The lean morph preferentially targeted by the fishery and recognized as highly preyed upon by sea lamprey was more highly impacted genetically than other morphs, as evidenced by greater loss of genetic diversity first during the period of overfishing, then during the period of high sea lamprey abundance once the fishery collapsed. The siscowet morph also experienced genetic bottlenecks during the period of overfishing (pre-collapse period). Results indicate significant levels of genetic differentiation among morphs historically prior to declines in abundance and also among contemporary populations, suggesting that periods of population decline and resurgence in abundance and distribution did not result in loss of genetic distinctiveness among morphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allendorf FW, England PR, Luikart G, Ritchie PA, Ryman N (2008) Genetics effects of harvest on wild animal populations. Trends Ecol Evol 23:327–337. doi:10.1016/j.tree.2008.02.008

    Article  PubMed  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004) Genetix, logiciel sous Windows™ pour la génétique des populations. Release 4.05. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000: Université de Montpellier II, Montpellier, France.

  • Benjamini Y, Yekutieli D (2001) The control of false discovery rate under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Bergstedt RA, Argyle RL, Seelye JG, Scribner KT, Curtis GL (2003) In situ determination of the annual thermal habitat use by lake trout (Salvelinus namaycush) in Lake Huron. J Great Lakes Res 29(suppl 1):347–361

    Article  Google Scholar 

  • Bittner D, Excoffier L, Largiadèr CR (2010) Patterns of morphological changes and hybridization between sympatric whitefish morphs (Coregonus spp.) in a Swiss lake: a role for eutrophication? Mol Ecol 19:2152–2167. doi:10.1111/j.1365-294X.2010.04623.x

    Article  PubMed  CAS  Google Scholar 

  • Bronte CR, Sitar SP (2008) Harvest and relative abundance of siscowet lake trout in Michigan waters of Lake Superior, 1929–1961. Trans Am Fish Soc 137:916–926. doi:10.1577/T07-096.1

    Article  Google Scholar 

  • Dunlop ES, Enberg K, Jørgensen C, Heino M (2009) Toward Darwinian fisheries management. Evol Appl 2:245–259. doi:10.1111/j.1752-4571.2009.00087.x

    Article  Google Scholar 

  • Eschmeyer PH, Phillips AM Jr (1965) Fat content of the flesh of siscowets and lake trout from Lake Superior. Trans Am Fish Soc 94:62–74

    Article  Google Scholar 

  • Eshenroder RL (2008) Differentiation of deep-water lake charr Salvelinus namaycush in North American lakes. Environ Biol Fish 83:77–90. doi:10.1007/s10641-007-9265-y

    Article  Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  PubMed  CAS  Google Scholar 

  • Goetz F, Rosauer D, Sitar S et al (2010) A genetic basis for the phenotypic differentiation between siscowet and lean lake trout (Salvelinus namaycush). Mol Ecol 19(suppl 1):176–196. doi:10.1111/j.1365-294X.2009.04481.x

    Article  PubMed  Google Scholar 

  • Gow JL, Peichel CL, Taylor EB (2006) Contrasting hybridisation rates between sympatric three-spined sticklebacks highlight the fragility of reproductive barriers between evolutionarily young species. Mol Ecol 15:739–752. doi:10.1111/j.1365-294X.2006.02825.x

    Article  PubMed  Google Scholar 

  • Guinand B, Scribner KT (2003) Evaluation of methodology for detection of genetic bottlenecks: inferences from temporally replicated lake trout populations. C R Biol 326:S61–S67. doi:10.1016/S1631-0691(03)00039-8

    Article  PubMed  Google Scholar 

  • Guinand B, Scribner KT, Page KS, Burnham-Curtis MK (2003) Genetic variation over space and time: analyses of extinct and remnant lake trout populations in the Upper Great Lakes. Proc R Soc B270:425–433. doi:10.1098/rspb.2002.2250

    Google Scholar 

  • Hansen MJ (1999) Lake trout in the Great Lakes: basinwide stock collapse and binational restoration. In: Taylor WW, Ferreri CP (eds) Great Lakes fisheries policy and management: a binational perspective. Michigan State University Press, East Lansing

    Google Scholar 

  • Hansen MJ, Peck JW, Schorfhaar RG et al (1995) Lake trout (Salvelinus namaycush) populations in Lake Superior and their restoration in 1959–1993. J Great Lakes Res 21(suppl 1):152–175

    Article  Google Scholar 

  • Harvey CJ, Schram ST, Kitchell JF (2003) Trophic relationships among lean and siscowet lake trout in Lake Superior. Trans Am Fish Soc 132:219–228

    Article  Google Scholar 

  • Heinrich JW, Mullett KM, Hansen MJ et al (2003) Sea lamprey abundance and management in Lake Superior, 1957 to 1999. J Great Lakes Res 29(suppl 1):566–583

    Article  Google Scholar 

  • Hutchings JA, Fraser DJ (2008) The nature of fisheries- and farming-induced evolution. Mol Ecol 17:294–313. doi:10.1111/j.1365-294X.2007.03485.x

    Article  PubMed  Google Scholar 

  • Hutchinson WF, van Oosterhout C, Rogers SI, Carvalho GR (2003) Temporal analysis of archived samples indicates marked genetic changes in declining North Sea cod (Gadus morhua). Proc R Soc B 270:2125–2132. doi:10.1098/rspb.2003.2493

    Article  PubMed  Google Scholar 

  • Jørgensen C, Enberg K, Dunlop ES et al (2007) Managing evolving fish stocks. Science 318:1247–1248. doi:10.1126/science.1148089

    Article  PubMed  Google Scholar 

  • Kitano J, Bolnick DI, Beauchamp DA et al (2008) Reverse evolution of armor plates in the threespine stickleback. Curr Biol 18:769–774. doi:10.1016/j.cub.2008.04.027

    Article  PubMed  CAS  Google Scholar 

  • Kitchell JF, Cox SP, Harvey CJ et al (2000) Sustainability of the Lake Superior fish community: interactions in a food web context. Ecosystems 3:545–560

    Article  Google Scholar 

  • Krueger CC, Ihssen PE (1995) Review of genetics of lake trout in the Great Lakes: history, molecular genetics, physiology, strain comparisons, and restoration management. J Great Lakes Res 21(suppl 1):348–363

    Article  Google Scholar 

  • Leberg PL (2002) Estimating allelic richness: effects of sample size and bottlenecks. Mol Ecol 11:2445–2449

    Article  PubMed  CAS  Google Scholar 

  • Moore SA, Bronte CR (2001) Delineation of sympatric morphotypes of lake trout in Lake Superior. Trans Am Fish Soc 130:1233–1240

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nielsen EE, Hansen MM (2008) Waking the dead: the value of population genetic analyses of historical samples. Fish Fish 9:450–461. doi:10.1111/j.1467-2979.2008.00304.x

    Article  Google Scholar 

  • Olden JD, Poff NL, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24. doi:10.1016/j.tree.2003.09.010

    Article  PubMed  Google Scholar 

  • Øostergard S, Hansen MM, Loeschke V, Nielsen EE (2003) Long-term temporal changes of genetic composition of brown trout (Salmo trutta L.) populations inhabiting an unstable environment. Mol Ecol 12:3123–3135. doi:10.1046/j.1365-294X.2003.01976.x

    Article  Google Scholar 

  • Page KS, Scribner KT, Burnham-Curtis M (2004) Genetic diversity of wild and hatchery lake trout populations: relevance for management and restoration in the Great Lakes. Trans Am Fish Soc 133:674–691

    Article  Google Scholar 

  • Palstra FP, Ruzzante DE (2010) A temporal perspective on population structure and gene flow in Atlantic salmon (Salmo salar) in Newfoundland, Canada. Can J Fish Aquat Sci 67:225–242. doi:10.1139/F09-176

    Article  Google Scholar 

  • Peck JW (1975) Brief life history accounts of five commercial salmonid fishes in Lake Superior. Fishery Research Report 1821, Michigan Department of Natural Resources: Ann Arbor

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Article  Google Scholar 

  • Rahrer JF (1965) Age, growth, maturity, and fecundity of “humper” lake trout, Isle Royale, Lake Superior. Trans Am Fish Soc 94:75–83

    Article  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Res 8:103–106

    Article  Google Scholar 

  • Ruzzante D, Taggart CT, Doyle RW, Cook D (2001) Stability in the historical pattern of genetic structure in Newfoundland cod (Gadus morhua) despite the catastrophic decline in population size from 1964 to 1994. Conserv Genet 2:257–269

    Google Scholar 

  • Ryman N, Palm S (2006) Powsim: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol Notes 6:600–602. doi:10.1111/j.1365-294X.2006.01378.x

    Article  Google Scholar 

  • Ryman N, Palm S, André C et al (2006) Power for detecting genetic divergence: differences between statistical methods and marker loci. Mol Ecol 15:2031–2045. doi:10.1111/j.1365-294X.2006.02839.x

    Article  PubMed  CAS  Google Scholar 

  • Seehausen O (2006) Conservation: losing biodiversity by reverse speciation. Curr Biol 16:R334–R337. doi:10.1016/j.cub.2006.03.080

    Article  PubMed  CAS  Google Scholar 

  • Seehausen O, Takimoto G, Roy D, Jokkela J (2008) Speciation reversal and biodiversity dynamics with hybridisation in changing environments. Mol Ecol 17:30–44. doi:10.1111/j.1365-294X.2007.03529.x

    Article  PubMed  Google Scholar 

  • Sitar SP, Morales HM, Mata MT et al (2008) Survey of siscowet lake trout at their maximum depth in Lake Superior. J Great Lakes Res 34:276–286

    Article  Google Scholar 

  • Swanson B, Halverson M, Fisher S (1994) Historical lake trout catch for Wisconsin Lake Superior waters, 1936–1941. Great Lakes Fishery Commission, Lake Superior Committee Annual Meeting Minutes, Ann Arbor

  • Taylor EB, Boughman JW, Groenenboom M, Sniatynski M, Schluter D, Gow JL (2006) Speciation in reverse: morphological and genetic evidence of the collapse of a three-spined stickleback (Gasterosteus aculeatus) species pair. Mol Ecol 15:343–355. doi:10.1111/j.1365-294X.2005.02794.x

    Article  PubMed  CAS  Google Scholar 

  • van Oosterhout C, Hutchison WF, Wills DPM, Shipley P (2004) Microchecker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Weir BS, Hill WG (2002) Estimating F-statistics. Annu Rev Genet 36:721–750

    Article  PubMed  CAS  Google Scholar 

  • Wilberg MJ, Hansen MJ, Bronte CR (2003) Historic and modern abundance of wild lean lake trout in Michigan waters of Lake Superior: implications for restoration goals. N Am J Fish Manag 23:100–108

    Article  Google Scholar 

  • Zimmerman MS, Schmidt SN, Krueger CC, Vander Zanden MJ, Eshenroder RL (2009) Ontogenetic niche shifts and resource partitioning of lake trout morphotypes. Can J Fish Aquat Sci 66:1007–1018. doi:10.1139/F09-060

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Great Lakes Fishery Trust, the Great Lakes Protection Fund, the Michigan Sea Grant College Program and the Partnership for Ecosystem Research and Management cooperative agreement between the Michigan Department of Natural Resources and Michigan State University. The authors thank M. Ebener, S. Libants, and S.P. Sitar for help and input at various stages of this project. Comments by anonymous reviewers improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Guinand.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(doc 109 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guinand, B., Page, K.S., Burnham-Curtis, M.K. et al. Genetic signatures of historical bottlenecks in sympatric lake trout (Salvelinus namaycush) morphotypes in Lake Superior. Environ Biol Fish 95, 323–334 (2012). https://doi.org/10.1007/s10641-012-0005-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-012-0005-6

Keywords

Navigation