Environmental Biology of Fishes

, Volume 90, Issue 3, pp 263–276 | Cite as

Spatial and temporal trends in yellow stingray abundance: evidence from diver surveys

  • Christine A. Ward-Paige
  • Christy Pattengill-Semmens
  • Ransom A. Myers
  • Heike K. Lotze
Article

Abstract

Recent concerns about changing elasmobranch populations have prompted the need to understand their patterns of distribution and abundance through non-destructive sampling methods. Since scientific divers represent a small portion of the total number of divers worldwide, the use of non-scientific divers could drastically increase the number of observations needed to monitor broad-scale, long-term trends. Here, we use 83,940 surveys collected by trained volunteer divers to examine spatial and temporal trends of the most frequently sighted elasmobranch species in the greater-Caribbean, the yellow stingray (Urobatis jamaicensis). Despite being relatively common and listed as Least Concern on the IUCN Red List, little is known about the status of this species. In total, yellow stingrays were observed on 5,658 surveys (6.7% sighting frequency) with the highest occurrence in the regions surrounding Cuba. Overall, sighting frequency declined from 20.5% in 1994 to 4.7% in 2007—a standardized decline rate of −0.11. However, these trends were not consistent in all regions. The strongest decline occurred in the Florida Keys, the most sampled region, where trends were similar among all areas, habitats and depths. In contrast, sighting frequency significantly increased in Jamaica where large fishes are severely depleted. We discuss possible explanations for these changes including habitat degradation, exploitation and changes in trophic interactions. Our results suggest large-scale changes in yellow stingray abundance that have been unnoticed by the scientific community. Thus, our study highlights the value of non-scientific divers for collecting data that can be used to understand population trends of otherwise poorly studied species.

Keywords

Citizen science Elasmobranch monitoring Yellow stingray Diver survey Population trend Trophic interactions 

Notes

Acknowledgements

We are grateful to W. Blanchard for statistical advice, L. Lucifora, H. Whitehead and B. Worm and two anonymous reviewers for comments and discussion. We thank the Reef Environmental Education Foundation fish surveyors for collecting data. Financial support was provided by the Natural Sciences and Engineering Research Council of Canada, the Census of Marine Life’s Future of Marine Animal Populations Program, the Lenfest Ocean Program and The Pew Charitable Trusts with grants to R.A. Myers, H.K. Lotze.

Supplementary material

10641_2010_9739_MOESM1_ESM.xls (19 kb)
Table S1(XLS 19 kb)
10641_2010_9739_MOESM2_ESM.xls (17 kb)
Table S2(XLS 17 kb)
10641_2010_9739_MOESM3_ESM.xls (20 kb)
Table S3(XLS 20 kb)
10641_2010_9739_MOESM4_ESM.xls (20 kb)
Table S4(XLS 19 kb)

References

  1. Aronson RB, Precht WF (2006) Conservation, precaution, and Caribbean reefs. Coral Reefs 25:441–450CrossRefGoogle Scholar
  2. Arzoumanian Z, Holmberg J, Norman B (2005) An astronomical pattern-matching algorithm for computer-aided identification of whale sharks Rhincodon typus. J Appl Ecol 42:999–1011CrossRefGoogle Scholar
  3. Ault JS, Smith SG, Bohnsack JA, Luo JG, Harper DE, McClellan DB (2006) Building sustainable fisheries in Florida’s coral reef ecosystem: positive signs in the Dry Tortugas. Bull Mar Sci 78:633–654Google Scholar
  4. Barnes JW, Sherman RL, Huston JP, Russo A, Spieler RE (2003) The yellow stingray, Urobatis jamaicensis, as a model for studying cerebellar function in vertebrates. Integr Comp Biol 43:881–881Google Scholar
  5. Baum JK, Myers RA (2004) Shifting baselines and the decline of pelagic sharks in the Gulf of Mexico. Ecol Lett 7:135–145CrossRefGoogle Scholar
  6. Baum JK, Myers RA, Kehler DG, Worm B, Harley SJ, Doherty PA (2003) Collapse and conservation of shark populations in the Northwest Atlantic. Science 299:389–392PubMedCrossRefGoogle Scholar
  7. Bigelow HB, Schroeder WC (1953) Fishes of the western North Atlantic. Sawfishes, guitarfishes, skates, rays and chimaeroids. Mem Sears Found Mar Res 1:416–427Google Scholar
  8. Brock VE (1954) A preliminary report on a method of estimating reef fish populations. J Wildl Manage 18:297–308CrossRefGoogle Scholar
  9. Brule H, Puerto-Novelo E, Perez-Diaz E, Renan-Galindo X (2005) Diet composition of juvenile black grouper (Mycteroperca bonaci) from coastal nursery areas of the Yucatan Peninsula, Mexico. Bull Mar Sci 77:441–452Google Scholar
  10. Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortes J, Delbeek JC, DeVantier L, Edgar GJ, Edwards AJ, Fenner D, Guzman HM, Hoeksema BW, Hodgson G, Johan O, Licuanan WY, Livingstone SR, Lovell ER, Moore JA, Obura DO, Ochavillo D, Polidoro BA, Precht WF, Quibilan MC, Reboton C, Richards ZT, Rogers AD, Sanciangco J, Sheppard A, Sheppard C, Smith J, Stuart S, Turak E, Veron JEN, Wallace C, Weil E, Wood E (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560–563PubMedCrossRefGoogle Scholar
  11. Cortes E (1999) Standardized diet compositions and trophic levels of sharks. ICES J Mar Sci 56:707–717CrossRefGoogle Scholar
  12. Duarte CM (2002) The future of seagrass meadows. Environ Conserv 29:192–206Google Scholar
  13. Dwivedi J, Trombetta LD (2006) Acute toxicity and bioaccumulation of tributyltin in tissues of Urolophus jamaicensis (yellow stingray). J Toxicol Environ Health Part A Curr Issues 69:1311–1323CrossRefGoogle Scholar
  14. Fahy DP (2004) Diel activity patterns, space utilization, seasonal distribution and population structure of the yellow stingray, Urobatis jamaicensis (Cuvier, 1817) in South Florida. PhD. Nova Southeastern University, Fort LauderdaleGoogle Scholar
  15. Fahy DP, Sherman RL (2000) Gross brain morphology in the yellow stingray, Urolophus jamaicensis. American Elasmobranch Society 2000 Annual Meeting, La Paz, B.C.S., Mexico, USA 16th annual meetingGoogle Scholar
  16. Fahy DP, Spieler RE, Hamlett WC (2007) Preliminary observations on the reproductive cycle and uterine fecundity of the yellow stingray, Urobatis jamaicensis (Elasmobranchii : Myliobatiformes : Urolophidae) in Southeast Florida, USA. Raffles Bull Zool 131–139Google Scholar
  17. Ferretti F, Myers RA, Serena F, Lotze HK (2008) Loss of large predatory sharks from the Mediterranean Sea. Conserv Biol 22:952–964PubMedCrossRefGoogle Scholar
  18. Ferretti F, Worm B, Britten GL, Heithaus MR, Lotze HK (2010) Patterns and ecosystem consequences of shark declines in the ocean. Ecol Lett 13:1055–1071PubMedGoogle Scholar
  19. Frias-Torres S (2006) Habitat use of juvenile goliath grouper Epinephelus itajara in the Florida Keys, USA. Endanger Species Res 1:1–6CrossRefGoogle Scholar
  20. Friedlander AM, DeMartini EE (2002) Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian Islands: the effects of fishing down apex predators. Mar Ecol Prog Ser 230:253–264CrossRefGoogle Scholar
  21. Garcia VB, Lucifora LO, Myers RA (2008) The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras. Proc R Soc B Biol Sci 275:83–89CrossRefGoogle Scholar
  22. Gardner T, Cote IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960PubMedCrossRefGoogle Scholar
  23. Green SO, Webber DF (2003) The effects of varying levels of eutrophication on phytoplankton and seagrass (Thalassia testudinum) populations of the southeast coast of Jamaica. Bull Mar Sci 73:443–455Google Scholar
  24. Hardt MJ (2009) Lessons from the past: the collapse of Jamaican coral reefs. Fish Fish 10:143–158Google Scholar
  25. Hawkins JP, Roberts CM (2004) Effects of artisanal fishing on Caribbean coral reefs. Conserv Biol 18:215–226CrossRefGoogle Scholar
  26. Heithaus MR, Burkholder D, Hueter RE, Heithaus LI, Pratt HL, Carrier JC (2007) Spatial and temporal variation in shark communities of the lower Florida Keys and evidence for historical population declines. Can J Fish Aquat Sci 64:1302–1313CrossRefGoogle Scholar
  27. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638PubMedCrossRefGoogle Scholar
  28. Kimmel JJ (1985) A new species-time method for visual assessment of fishes and its comparison with established methods. Environ Biol Fish 12:23–32CrossRefGoogle Scholar
  29. Lapointe BE, Barile PJ, Littler MM, Littler DS, Bedford BJ, Gasque C (2005) Macroalgal blooms on southeast Florida coral reefs I. Nutrient stoichiometry of the invasive green alga Codium isthmocladum in the wider Caribbean indicates nutrient enrichment. Harmful Algae 4:1092–1105CrossRefGoogle Scholar
  30. Lester SE, Halpern BS, Grorud-Colvert K, Lubchenco J, Ruttenberg BI, Gaines SD, Airame S, Warner RR (2009) Biological effects within no-take marine reserves: a global synthesis. Mar Ecol Prog Ser 384:33–46CrossRefGoogle Scholar
  31. Meyer CG, Dale JJ, Papastamatiou YP, Whitney NM, Holland KN (2009) Seasonal cycles and long-term trends in abundance and species composition of sharks associated with cage diving ecotourism activities in Hawaii. Environ Conserv 36:104–111CrossRefGoogle Scholar
  32. Mora C (2008) A clear human footprint in the coral reefs of the Caribbean. Proc R Soc B Biol Sci 275:767–773CrossRefGoogle Scholar
  33. Mora C, Andrefouet S, Costello MJ, Kranenburg C, Rollo A, Vernon J, Gaston KJ, Myers RA (2006) Coral reefs and the global network of marine protected areas. Science 312:1750–1751PubMedCrossRefGoogle Scholar
  34. Myers RA, Worm B (2005) Extinction, survival or recovery of large predatory fishes. Philos Trans R Soc B Biol Sci 360:13–20CrossRefGoogle Scholar
  35. Myers RA, Baum JK, Shepherd TD, Powers SP, Peterson CH (2007) Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315:1846–1850PubMedCrossRefGoogle Scholar
  36. Paddack MJ, Reynolds JD, Aguilar C, Appeldoorn RS, Beets J, Burkett EW, Chittaro PM, Clarke K, Esteves R, Fonseca AC, Forrester GE, Friedlander AM, Garcia-Sais J, Gonzalez-Sanson G, Jordan LKB, McClellan DB, Miller MW, Molloy PP, Mumby PJ, Nagelkerken I, Nemeth M, Navas-Camacho R, Pitt J, Polunin NVC, Reyes-Nivia MC, Robertson DR, Rodriguez-Ramirez A, Salas E, Smith SR, Spieler RE, Steele MA, Williams ID, Wormald CL, Watkinson AR, Cote IM (2009) Recent region-wide declines in Caribbean reef fish abundance. Curr Biol 19:590–595PubMedCrossRefGoogle Scholar
  37. Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G, Warner RR, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958PubMedCrossRefGoogle Scholar
  38. Pattengill-Semmens CV (2002) Volunteer reef fish monitoring in the Florida Keys national marine sanctuary: 2002 update report. REEF FKNMS Annual Monitoring Report 2002Google Scholar
  39. Pattengill-Semmens CV, Semmens BX (1998) Fish census data generated by non-experts in the Flower Garden Banks national marine sanctuary. Gulf Mex Sci 2:196–207Google Scholar
  40. Piercy AN, Snelson Jr FF, Grubbs RD (2006) Urobatis jamaicensis. IUCN 2009. IUCN Red List of Threatened Species. Version 2009.2Google Scholar
  41. Porch CE, Eklund AM, Scott GP (2006) A catch-free stock assessment model with application to goliath grouper (Epinephelus itajara) off southern Florida. Fish Bull 104:89–101Google Scholar
  42. Porter JW, Lewis SK, Porter KG (1999) The effect of multiple stressors on the Florida Keys coral reef ecosystem: a landscape hypothesis and a physiological test. Limnol Oceanogr 44:941–949CrossRefGoogle Scholar
  43. Porter JW, Dustan P, Jaap WC, Patterson KL, Kosmynin V, Meier OW, Patterson ME, Parsons M (2001) Patterns of spread of coral disease in the Florida Keys. Hydrobiologia 460:1–24CrossRefGoogle Scholar
  44. REEF (2001) Volunteer reef fish monitoring in the Florida Keys national marine sanctuary: 1994–2001. Reef Environmental Education Foundation FKNMS Monitoring 1994–2001, pp 1–10Google Scholar
  45. REEF (2002) Volunteer reef fish monitoring in the Florida Keys National Marine Sanctuary: 2002 update report. REEF FKNMS Annual Monitoring Report 2002Google Scholar
  46. Robbins WD, Hisano M, Connolly SR, Choat JH (2006) Ongoing collapse of coral-reef shark populations. Curr Biol 16:2314–2319PubMedCrossRefGoogle Scholar
  47. Robblee MB, Barber TR, Carlson PR, Durako MJ, Fourqurean JW, Muehlstein LK, Porter D, Yarbro LA, Zieman RT, Zieman JC (1991) Mass mortality of the tropical seagrass Thalassia-testudinum in Florida Bay (USA). Mar Ecol Prog Ser 71:297–299CrossRefGoogle Scholar
  48. Rogers C (2009) Coral bleaching and disease should not be underestimated as causes of Caribbean coral reef decline. Proc R Soc B Biol Sci 276:197–198CrossRefGoogle Scholar
  49. Rogers CS, Beets J (2001) Degradation of marine ecosystems and decline of fishery resources in marine protected areas in the US Virgin Islands. Environ Conserv 28:312–322Google Scholar
  50. Sadovy Y, Eckland A-M (1999) Synopsis of biological data on the Nassau Grouper, Epinephelus striatus (Bloch, 1792), and the Jewfish, E. itajara (Lichtenstein, 1822) NOAA Tech Rep NMFS 146Google Scholar
  51. Saenz-Arroyo A, Roberts CM, Torre J, Carino-Olvera M (2005) Using fishers’ anecdotes, naturalists’ observations and grey literature to reassess marine species at risk: the case of the Gulf grouper in the Gulf of California, Mexico. Fish Fish 6:280–280Google Scholar
  52. Sandin SA, Smith JE, DeMartini EE, Dinsdale EA, Donner SD, Friedlander AM, Konotchick T, Malay M, Maragos JE, Obura D, Pantos O, Paulay G, Richie M, Rohwer F, Schroeder RE, Walsh S, Jackson JBC, Knowlton N, Sala E (2008) Baselines and degradation of coral reefs in the northern Line Islands. PLoS ONE 3:1548CrossRefGoogle Scholar
  53. Schmitt EF, Sullivan KM (1996) Analysis of a volunteer method for collecting fish presence and abundance data in the Florida Keys. Bull Mar Sci 59:404–416Google Scholar
  54. Schmitt EF, Semmens BX, Sullivan KM (1993) Research applications of volunteer generated coral reef fish surveys. The Nature Conservancy, Miami, p 15Google Scholar
  55. Schmitt EF, Sluka RD, Sullivan-Sealey KM (2002) Evaluating the use of roving diver and transect surveys to assess the coral reef fish assemblage off southeastern Hispaniola. Coral Reefs 21:216–223Google Scholar
  56. Shepherd TD, Myers RA (2005) Direct and indirect fishery effects on small coastal elasmobranchs in the northern Gulf of Mexico. Ecol Lett 8:1095–1104CrossRefGoogle Scholar
  57. Silva Lee AS (1974) Habitos alimentarios de la cherna criolla Epinephelus striatus Bloch y algunos datos sobre su biologia. Academia de Ciencias de Cuba, Instituto de Oceanologia, La Habana, p 14Google Scholar
  58. Smith SE, Au DW, Show C (1998) Intrinsic rebound potentials of 26 species of Pacific sharks. Mar Freshwater Res 49:663–678CrossRefGoogle Scholar
  59. Somerfield PJ, Jaap WC, Clarke KR, Callahan M, Hackett K, Porter J, Lybolt M, Tsokos C, Yanev G (2008) Changes in coral reef communities among the Florida Keys, 1996–2003. Coral Reefs 27:951–965CrossRefGoogle Scholar
  60. Stallings C (2009) Fishery-independent data reveal negative effect of human population density on Caribbean predatory fish communities. PLoS ONE 4:e5333PubMedCrossRefGoogle Scholar
  61. Stevenson C, Katz LS, Micheli F, Block B, Heiman KW, Perle C, Weng K, Dunbar R, Witting J (2007) High apex predator biomass on remote Pacific islands. Coral Reefs 26:47–51CrossRefGoogle Scholar
  62. Stobart B, Warwick R, Gonzalez C, Mallol S, Diaz D, Renones O, Goni R (2009) Long-term and spillover effects of a marine protected area on an exploited fish community. Mar Ecol Prog Ser 384:47–60CrossRefGoogle Scholar
  63. Strong WRJ (1990) Hammerhead shark predation on stingrays: an observation of prey handling by Sphyrna mokarran. Copeia 3:836–840CrossRefGoogle Scholar
  64. Sulikowski JA, Maginniss LA (2001) Effects of environmental dilution on body fluid regulation in the yellow stingray, Urolophus jamaicensis. Comp Biochem Physiol A Mol Integr Physiol 128:223–232PubMedCrossRefGoogle Scholar
  65. Theberge MM, Dearden P (2006) Detecting a decline in whale shark Rhincodon typus sightings in the Andaman Sea, Thailand, using ecotourist operator-collected data. Oryx 40:337–342CrossRefGoogle Scholar
  66. Venables WN, Ripley BD (1999) Modern applied statistics with S-Plus, 3rd edn. Springer-Verlag, New YorkGoogle Scholar
  67. Ward-Paige CA, Risk MJ, Sherwood OA, Jaap WC (2005) Clionid sponge surveys on the Florida Reef Tract suggest land-based nutrient inputs. Mar Pollut Bull 51:570–579PubMedCrossRefGoogle Scholar
  68. Ward-Paige C, Mills Flemming J, Lotze HK (2010a) Overestimating fish counts by non-instantaneous visual censuses: consequences for population and community descriptions. PLoS ONE 5:e11722PubMedCrossRefGoogle Scholar
  69. Ward-Paige CA, Mora C, Lotze HK, Pattengill-Semmens CV, McClenachan L, Arias-Castro E, Myers RA (2010b) Large-scale absence of sharks on reefs in the greater-Caribbean: a footprint of human pressures. PLoS ONE 5:e11968PubMedCrossRefGoogle Scholar
  70. Watson RA, Quinn TJ (1997) Performance of transect and point count underwater visual census methods. Ecol Modell 104:103–112CrossRefGoogle Scholar
  71. Watson DL, Anderson MJ, Kendrick GA, Nardi K, Harvey ES (2009) Effects of protection from fishing on the lengths of targeted and non-targeted fish species at the Houtman Abrolhos Islands, Western Australia. Mar Ecol Prog Ser 384:241–249CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Christine A. Ward-Paige
    • 1
  • Christy Pattengill-Semmens
    • 2
  • Ransom A. Myers
    • 1
  • Heike K. Lotze
    • 1
  1. 1.Department of BiologyDalhousie UniversityHalifaxCanada
  2. 2.Reef Environmental Education FoundationKey LargoUSA

Personalised recommendations