Changes in trophic level of Squatina guggenheim with increasing body length: relationships with type, size and trophic level of its prey

Abstract

The occurrence of changes in the trophic level (TL) of sharks with growth has not been quantified until now. Here length-related changes on Squatina guggenheim Marini trophic level were determined, and shifts in type, size and trophic level of its prey were analysed. Sampling took place during five bottom trawl surveys conducted in the Argentine–Uruguayan Common Fishing Zone during spring (December/1995, October/1997) and fall (March/1997, March–April/1998, May–June/1998), using an Engel bottom-trawl net to capture the sharks. Three length groups were defined based on diet composition and using a cluster analysis (group I, 23–60 cm; group II, 61–80 cm; group III, 81–91 cm L T). An ANOSIM procedure detected significant differences (P < 0.05) in the diet spectrum between the three length groups. The smallest sharks (group I) ingested fish prey ranging from 5 to 21 cm L T, medium sharks (group II) fed on fish prey between 11 and 35 cm L T, and largest sharks (group III) preyed on fish between 13 and 40 cm L T. Diet structure of length groups were discriminated by almost the same prey taxa that characterized them. The increase of S. guggenheim body length promoted a decrease in the relative importance of small pelagic fishes. Contrarily, prey as medium benthopelagic fishes, medium pelagic squid and medium benthopelagic fishes showed an inverse tendency, indicating a broad diet spectrum of adults. Predator-length and prey-length relationship indicated a trend where 44.8% of S. guggenheim diet was integrated by prey <20% of their own body length and 32.8% of their diet was composed by prey >30% of their own length. The increase of mean prey weight was associated with the increase of predator weight and length. Smallest sharks (group I) were identified as secondary consumers (TL < 4) whereas medium sharks (group II) and largest sharks (group III) were placed as tertiary consumers (TL > 4). The study revealed an increase in S. guggenheim TL with shark growth as a consequence of changes on type, size and TL of prey ingested.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Acha EM, Mianzan HW, Guerrero RA, Favero M, Bava J (2004) Marine fronts at the continental shelves of austral South America: physical and ecological processes. J Mar Syst 44:83–105 doi:10.1016/j.jmarsys.2003.09.005

    Article  Google Scholar 

  2. Assis CA (1996) A generalized index for stomach contents analysis in fish. Sci Mar 60:385–389

    Google Scholar 

  3. Bakun A, Parrish RH (1991) Comparative studies of coastal pelagic fish reproductive habitats: the anchovy (Engraulis anchoita) of the southwestern Atlantic. ICES J Mar Sci 48:343–361 doi:10.1093/icesjms/48.3.343

    Article  Google Scholar 

  4. Bazzino G, Quiñones RA (1999) Características biológicas y ecológicas del calamar Illex argentinus (Cephalopoda, Ommastrephidae) relevantes para el ordenamiento de su pesquería en el Atlántico Sudoccidental. Gayana (Zool) 63:87–100

    Google Scholar 

  5. Boschi EE, Fischbach CE, Iorio MI (1992) Catálogo ilustrado de los crustáceos estomatópodos y decápodos marinos de Argentina. Frente Marit 10:1–92

    Google Scholar 

  6. Brewer DT, Blaber SJM, Salini JP, Farmer MJ (1995) Feeding ecology of predatory fishes from Groote Eylandt in the Gulf of Carpentaria, Australia, with special reference to predation on penaeid prawns. Estuar Coast Shelf Sci 40:577–600 doi:10.1006/ecss.1995.0039

    Article  Google Scholar 

  7. Cherel Y, Duhamel G (2004) Antarctic jaws: cephalopod prey of sharks in Kerguelen waters. Deep-Sea Res (1 Oceanogr Res Pap) 51:17–31

    Article  Google Scholar 

  8. Chiaramonte GE (1998) Shark fisheries in Argentina. Mar Freshw Res 49:601–609 doi:10.1071/MF97136

    Article  Google Scholar 

  9. Christensen V, Pauly D (1992) ECOPATH II—a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol Model 61:169–185 doi:10.1016/0304-3800(92)90016-8

    Article  Google Scholar 

  10. Christensen V, Walters C (2004) Ecopath with Ecosim: methods, capabilities and limitations. Ecol Model 172:109–139 doi:10.1016/j.ecolmodel.2003.09.003

    Article  Google Scholar 

  11. Clarke KL (1993) Non-parametric multivariate analyses of change in community structure. Aust J Ecol 18:117–143 doi:10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  12. Clarke KL, Green RH (1988) Statistical design and analysis for a “biological effects” study. Mar Ecol Prog Ser 46:213–226 doi:10.3354/meps046213

    Article  Google Scholar 

  13. Colonello JH, Lucifora LO, Massa AM (2007) Reproduction of the angular angel shark (Squatina guggenheim): geographic differences, reproductive cycle, and sexual dimorphism. ICES J Mar Sci 64:131–140

    Google Scholar 

  14. Cortés E (1999) Standardized diet compositions and trophic levels of sharks. ICES J Mar Sci 56:707–717 doi:10.1006/jmsc.1999.0489

    Article  Google Scholar 

  15. Cortés E, Manire Ch A, Hueter RE (1996) Diet, feeding habits, and diel feeding chronology of the bonnethead shark, Sphyrna tiburo, in southwest Florida. Bull Mar Sci 58:353–367

    Google Scholar 

  16. Cury P, Bakun A, Crawford RJM, Jarre A, Quiñones RA, Shannon LJ et al (2000) Small pelagics in upwelling systems: patterns of interaction and structural changes in ‘‘wasp-waist’’ ecosystems. ICES J Mar Sci 57:603–618 doi:10.1006/jmsc.2000.0712

    Article  Google Scholar 

  17. Ellis JR, Pawson MG, Shackley SE (1996) The comparative feeding ecology of six species of shark and four species of ray (Elasmobranchii) in the north-east Atlantic. J Mar Biol Assoc UK 76:89–106

    Article  Google Scholar 

  18. Froese R, Pauly D (eds) (2006) FishBase. http://www.fishbase.org. Cited Dec 2006

  19. George EL, Hadley WF (1979) Food and habitat partitioning between rock bass (Ambloplites rupestris) and smallmouth bass (Micropterus dolomieui) young of the year. Trans Am Fish Soc 108:253–261 doi:10.1577/1548-8659(1979)108<253:FAHPBR>2.0.CO;2

    Article  Google Scholar 

  20. Graeber RC (1974) Food intake patterns in captive juvenile lemon sharks, Negaprion brevirostris. Copeia 1974:554–556 doi:10.2307/1442559

    Article  Google Scholar 

  21. Guerrero RA, Acha EM, Framiñán MB, Lasta CA (1997) Physical oceanography of the Rio de la Plata Estuary, Argentina. Cont Shelf Res 17:727–742 doi:10.1016/S0278-4343(96)00061-1

    Article  Google Scholar 

  22. Hyslop EJ (1980) Stomach content analysis: a review of methods and their application. J Fish Biol 17:411–429 doi:10.1111/j.1095-8649.1980.tb02775.x

    Article  Google Scholar 

  23. Karpouzi VS, Stergiou KI (2003) The relationships between mouth size and shape and body length for 18 species of marine fishes and their trophic implications. J Fish Biol 62:1353–1365 doi:10.1046/j.1095-8649.2003.00118.x

    Article  Google Scholar 

  24. Lowe CG, Wetherbee BM, Crow GL, Tester AL (1996) Ontogenetic dietary shifts and feeding behaviour of the tiger shark, Galeocerdo cuvier, in Hawaiian waters. Environ Biol Fisches 47:203–211 doi:10.1007/BF00005044

    Article  Google Scholar 

  25. Lucifora LO (2003) Ecología y conservación de los grandes tiburones costeros de Bahía Anegada, Provincia de Buenos Aires, Argentina. Ph.D. thesis. Universidad de Mar del Plata, Argentina p 410

  26. Lucifora LO, Menni RC, Escalante A (2005) Reproduction, abundance and feeding habits of the broadnose sevengill shark, Notorynchus cepedianus, in north Patagonia, Argentina. Mar Ecol Prog Ser 289:237–244 doi:10.3354/meps289237

    Article  Google Scholar 

  27. Lyle JM (1983) Food and feeding habits of the lesser spotted dogfish, Scyliorhinus canicula (L.), in Isle of Man waters. J Fish Biol 23:725–737 doi:10.1111/j.1095-8649.1983.tb02950.x

    Article  Google Scholar 

  28. Menni RC, Ringuelet RA, Aramburu RH (1984) Peces marinos de la Argentina y Uruguay. Hemisferio Sur, Buenos Aires, p 369

    Google Scholar 

  29. Norbis W, Lorenzo I, Torres GJ (1999) Intra-annual growth variations of young-of-the-year hake (Merluccius hubbsi) of the Uruguayan continental shelf based on otolith analysis. Fish Res 44:129–137 doi:10.1016/S0165-7836(99)00059-4

    Article  Google Scholar 

  30. Olson DB, Podestá GP, Evans RH, Brown OB (1988) Temporal variations in the separation of Brazil and Malvinas Currents. Deep-Sea Res 35:1971–1990 doi:10.1016/0198-0149(88)90120-3

    Article  Google Scholar 

  31. Paesch L, Meneses P (1999) La pesquería de elasmobranquios en la Zona Común de Pesca Argentino–Uruguaya. In: Rey M, Arena G (eds) Estudios realizados sobre los elasmobranquios dentro del Río de la Plata y la Zona Común de Pesca Argentino–Uruguaya. INAPE–PNUD URU/92/003, Montevideo, 1–3

  32. Pauly D, Trites AW, Capuli E, Christensen V (1998) Diet composition and trophic levels of marine mammals. ICES J Mar Sci 55:467–481 doi:10.1006/jmsc.1997.0280

    Article  Google Scholar 

  33. Pauly D, Christensen V, Walters C (2000) Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of Fisheries. ICES J Mar Sci 57:697–706 doi:10.1006/jmsc.2000.0726

    Article  Google Scholar 

  34. Platell ME, Potter IC, Clarke KR (1998) Resource partitioning by four species of elasmobranchs (Batoidea: Urolophidae) in coastal waters of temperate Australia. Mar Biol (Berl) 131:719–734 doi:10.1007/s002270050363

    Article  Google Scholar 

  35. Scharf FS, Juanes F, Rountree RA (2000) Predator size–prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic niche breadth. Mar Ecol Prog Ser 208:229–248 doi:10.3354/meps208229

    Article  Google Scholar 

  36. Schefer LN, Platell ME, Valesini FJ, Potter IC (2002) Comparisons between the influence of habitat type, season and body size on the dietary compositions of fish species in nearshore marine waters. J Exp Mar Biol Ecol 278:67–92 doi:10.1016/S0022-0981(02)00337-4

    Article  Google Scholar 

  37. Sea Around Us (2006) A global database on marine fisheries and ecosystems. http://www.seaaroundus.org. Cited Dec 2006

  38. Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton, p 247

    Google Scholar 

  39. Stergiou KI, Karpouzi VS (2002) Feeding habits and trophic levels of Mediterranean fish. Rev Fish Biol Fish 11:217–254 doi:10.1023/A:1020556722822

    Article  Google Scholar 

  40. Stevens JD, Bonfil R, Dulvy NK, Walker PA (2000) The effects of fishing on sharks, rays and chimaeras (Chondrichthians), and the implications for marine ecosystems. ICES J Mar Sci 57:476–494 doi:10.1006/jmsc.2000.0724

    Article  Google Scholar 

  41. Stillwell CE, Kohler NE (1982) Food, feeding habits, and estimates of daily ration of the shortfin mako (Isurus oxyrinchus) in the northwest Atlantic. Can J Fish Aquat Sci 39:407–414

    Google Scholar 

  42. Villwock de ML, Vooren CM (2003) Catch and effort of demersal elasmobranchs in south Brazil from 1975 to 1997. Frente Marit 19:217–231

    Google Scholar 

  43. Vögler R, Milessi AC, Quiñones RA (2003) Trophic ecology of Squatina guggenheim on the continental shelf off Uruguay and northern Argentina. J Fish Biol 62:1254–1267 doi:10.1046/j.1095-8649.2003.00105.x

    Article  Google Scholar 

  44. Vögler R, Milessi AC, Quiñones RA (2008) Influence of environmental variables on the distribution of Squatina guggenheim (Chondrichthyes, Squatinidae) in the Argentine–Uruguayan Common Fishing Zone. Fish Res 91:212-221 doi:10.1016/j.fishres.2007.11.028

  45. Walters C, Christensen V, Pauly D (1997) Structuring dynamic model of exploited ecosystem from trophic mass-balance assessments. Rev Fish Biol Fish 7:139–172 doi:10.1023/A:1018479526149

    Article  Google Scholar 

  46. Weihs D, Keyes RS, Stalls DM (1981) Voluntary swimming speeds of two species of large carcharhinid sharks. Copeia 1981:219–222 doi:10.2307/1444062

    Article  Google Scholar 

  47. Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in size-structured populations. Annu Rev Ecol Syst 15:393–425 doi:10.1146/annurev.es.15.110184.002141

    Article  Google Scholar 

  48. Wetherbee BM, Cortés E (2004) Food consumption and feeding habits. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives. CRC, Florida, pp 223–244

    Google Scholar 

  49. White WT, Platell ME, Potter IC (2004) Comparisons between the diets of four abundant species of elasmobranchs in a subtropical embayment: implications for resource partitioning. Mar Biol (Berl) 144:439–448 doi:10.1007/s00227-003-1218-1

    Article  Google Scholar 

  50. Wood JB, Day C (eds) (2006) CephBase. http://www.cephbase.utmb.edu. Cited Dec 2006

  51. Zar JH (1999) Biostatistical analysis, 4thth edn. Prentice Hall, New Jersey, p 663

    Google Scholar 

Download references

Acknowledgments

The authors thank DINARA (Uruguay) for permitting us to generate the database used in this research through the participation of R.V.S and A.C.M. in regular Micropogonias furnieri and Merluccius hubbsi evaluation cruises. We also acknowledge the crew of the RV “Aldebarán” for their assistance. B. Yannicelli, E. Cortés and L. Lucifora provided useful comments to improve the manuscript. The German Academic Exchange Service (Deutscher Akademisher Austausch Dienst, DAAD) funded R.V.S. (A/99/14455) and A.C.M. (A/01/17601) through scholarships to conduct graduate studies at the University of Concepción.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Vögler.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vögler, R., Milessi, A.C. & Duarte, L.O. Changes in trophic level of Squatina guggenheim with increasing body length: relationships with type, size and trophic level of its prey. Environ Biol Fish 84, 41 (2009). https://doi.org/10.1007/s10641-008-9387-x

Download citation

Keywords

  • Angular angel shark
  • Feeding ecology
  • Predator–prey interactions
  • Uruguay
  • Marine food webs