Environmental Biology of Fishes

, Volume 82, Issue 1, pp 101–108

A new and morphologically distinct population of cavernicolous Poecilia mexicana (Poeciliidae: Teleostei)

  • M. Tobler
  • R. Riesch
  • F. J. García de León
  • I. Schlupp
  • M. Plath


The cave molly, Poecilia mexicana, from the Cueva del Azufre, a sulfur cave in Tabasco, Mexico, ranks among the best-studied cave fishes worldwide, despite being known from a single population only. Here we describe a newly discovered second population of cave-dwelling P. mexicana from a nearby, but mostly non-sulfidic cave (Luna Azufre). Despite apparent similarities between the two populations (such as reduced eye diameter and reduced pigmentation), a geometric morphometric analysis revealed pronounced morphological differentiation between the two cave forms.


Cave fish Cave molly Extremophile Hydrogen sulfide Regressive evolution Ecological diversification 


  1. Abdel-Latif H, Hassan E, von Campenhausen C (1990) Sensory performance of blind Mexican cave fish after destruction of the canal neuromasts. Naturwissenschaften 77:237–239PubMedCrossRefGoogle Scholar
  2. Bagarinao T (1992) Sulfide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms. Aquat Toxicol 24:21–62CrossRefGoogle Scholar
  3. Burt de Perera T (2004) Spatial parameters encoded in spatial map of the blind Mexican cave fish, Astyanax fasciatus. Anim Behav 68:291–295CrossRefGoogle Scholar
  4. Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458CrossRefGoogle Scholar
  5. Gordon MS, Rosen DE (1962) A cavernicolous form of the poeciliid fish Poecilia sphenops from Tabasco, México. Copeia 1962:360–368CrossRefGoogle Scholar
  6. Grieshaber MK, Völkel S (1998) Animal adaptations for tolerance and exploitation of poisonous sulfide. Ann Rev Physiol 60:33–53CrossRefGoogle Scholar
  7. Jeffery WR (2005) Adaptive evolution of eye degeneration in the Mexican blind cavefish. J Heredity 96:185–196CrossRefGoogle Scholar
  8. Körner KE, Schlupp I, Plath M, Loew ER (2006) Spectral sensitivity of mollies: comparing surface- and cave-dwelling Atlantic mollies, Poecilia mexicana. J Fish Biol 69:54–65CrossRefGoogle Scholar
  9. Langecker TG, Wilkens H, Parzefall J (1996) Studies on the trophic structure of an energy-rich Mexican cave (Cueva de las Sardinas) containing sulfurous water. Mémoires de Biospéologie 23:121–125Google Scholar
  10. Miller RR (2005) Freshwater fishes of Mexico. University of Chicago Press, ChicagoGoogle Scholar
  11. Parzefall J (1970) Morphologische Untersuchungen an einer Höhlenform von Mollienesia sphenops (Pisces, Poeciliidae). Zeitschrift für Morphologie der Tiere 68:323–342CrossRefGoogle Scholar
  12. Parzefall J (1973) Attraction and sexual cycle of poeciliids. In: Schroeder J (ed) Genetics and mutagenesis of fish, Springer Verlag, Berlin, pp 177–183Google Scholar
  13. Parzefall J (1993) Behavioural ecology of cave-dwelling fishes. In: Pitcher TJ (ed) Behaviour of teleost fishes, 2nd edn. Chapman and Hall, London, pp 573–608Google Scholar
  14. Parzefall J (2001) A review of morphological and behavioural changes in the cave molly, Poecilia mexicana, from Tabasco, Mexico. Environ Biol Fishes 62:263–275CrossRefGoogle Scholar
  15. Peters N, Peters G, Parzefall J, Wilkens H (1973) Über degenerative und konstruktive Merkmale bei einer phylogenetisch jungen Höhlenform von Poecilia sphenops (Pisces, Poeciliidae). Internationale Revue der Gesamten Hydrobiologie 58:417–436CrossRefGoogle Scholar
  16. Pisarowicz J (2005) Return to Tabasco. Assoc Mexican Cave Studies Newslett 28:27–57Google Scholar
  17. Plath M, Hauswaldt JS, Moll K, Tobler M, García de León FJ, Schlupp I, Tiedemann R (2007) Local adaptation and pronounced genetic differentiation in an extremophile fish, Poecilia mexicana, inhabiting a Mexican cave with toxic hydrogen sulfide. Mol Ecol 16:967–976PubMedCrossRefGoogle Scholar
  18. Plath M, Heubel KU, García de León FJ, Schlupp I (2005) Cave molly females (Poecilia mexicana, Poeciliidae, Teleostei) like well-fed males. Behav Ecol Sociobiol 58:144–151CrossRefGoogle Scholar
  19. Plath M, Parzefall J, Körner KE, Schlupp I (2004) Sexual selection in darkness? Female mating preferences in surface- and cave-dwelling Atlantic mollies, Poecilia mexicana (Poeciliidae, Teleostei). Behav Ecol Sociobiol 55:596–601CrossRefGoogle Scholar
  20. Plath M, Parzefall J, Schlupp I (2003) The role of sexual harassment in cave- and surface-dwelling populations of the Atlantic molly, Poecilia mexicana (Poeciliidae, Teleostei). Behav Ecol Sociobiol 54:303–309CrossRefGoogle Scholar
  21. Poulson TL (1963) Cave adaptation in amblyopsid fishes. Am Midland Naturalist 70:257–290CrossRefGoogle Scholar
  22. Poulson TL, Lavoie KH (2000) The trophic basis of subterranean ecosystems. In: Wilkens H, Culver DC, Humphries WF (ed) Ecosystems of the world 30: subterranean ecosystems, Elsevier Science, Amsterdam, pp 231–249Google Scholar
  23. Proudlove G (2006) An account of the subterranean (hypogean) fishes described up to 2003 with a bibliography 1541–2004. International Society for Subterranean Biology, MoulisGoogle Scholar
  24. Rohlf F (2004) tpsDig. Available from http://life.bio.sunysb.edu/morph/Google Scholar
  25. Rohlf F (2005) tpsRegr. Available from http://life.bio.sunysb.edu/morph/Google Scholar
  26. Rohlf F (2006) tpsUtil. Available from http://life.bio.sunysb.edu/morph/Google Scholar
  27. Romero A, Green SM (2005) The end of regressive evolution: examining and interpreting the evidence from cave fishes. J Fish Biol 67:3–31CrossRefGoogle Scholar
  28. Strecker U, Bernatchez L, Wilkens H (2003) Genetic divergence between cave and surface populations of Astyanax in Mexico (Characidae, Teleostei). Mol Ecol 12:699–710PubMedCrossRefGoogle Scholar
  29. Tobler M, Schlupp I, Heubel KU, Riesch R, García de León FJ, Giere O, Plath M (2006) Life on the edge: Hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters. Extremophiles 10:577–585PubMedCrossRefGoogle Scholar
  30. Walters L, Walters V (1965) Laboratory observations on a cavernicolous poeciliid from Tabasco, Mexico. Copeia 1965:214–233CrossRefGoogle Scholar
  31. Wilkens H, Strecker U (2003) Convergent evolution of the cavefish Astyanax (Characidae, Teleostei): genetic evidence from reduced eye-size and pigmentation. Biol J Linnean Soc 80:545–554CrossRefGoogle Scholar
  32. Zeiske E (1968) Prädispositionen bei Mollienesia sphenops (Pisces, Poeciliidae) für einen Übergang zum Leben in subterranen Gewässern. Z Vgl Physiol 58:190–222CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • M. Tobler
    • 1
    • 2
  • R. Riesch
    • 2
  • F. J. García de León
    • 3
  • I. Schlupp
    • 2
  • M. Plath
    • 2
    • 4
  1. 1.Zoologisches InstitutUniversität ZürichZurichSwitzerland
  2. 2.Department of ZoologyUniversity of OklahomaNormanUSA
  3. 3.Centro de Investigaciones Biológicas del NoroesteLa PazMexico
  4. 4.Institut für Biochemie/Biologie, Abteilung für Evolutionsbiologie/Spezielle ZoologieUniversität PotsdamPotsdamGermany

Personalised recommendations