Morphological diversity of the Cynoscion group (Perciformes: Sciaenidae) in the Gulf of Guayaquil region, Ecuador: A comparative approach

Synopsis

We assess morphological diversity of species of the Cynoscion group in the Gulf of Guayaquil (GOG) using traditional morphometric methods. Five species from the GOG assemblage (C. albus, C. analis, C. phoxocephalus, C. squamipinnis, and Isopisthus remifer) are compared to four species from a relatively well-studied assemblage in the western Atlantic (C. arenarius, C. nebulosus, C. nothus, and C. regalis). The two regional species assemblages broadly overlap in morphology, but sympatric species segregate relatively well within each assemblage. The GOG species segregate primarily along the major axis of shape variation in the study, which is associated with variation in the anal, second dorsal, and caudal fins. The western Atlantic species segregate primarily along the second major axis of shape variation, which is most strongly associated with variation in gill raker length, and less strongly with pectoral fin length, eye diameter, and length of the third dorsal spine. Patterns of morphological divergence among the western Atlantic species support the hypothesis that morphological divergence is associated with ecological divergence. Comparisons across assemblages indicate that morphological divergence among species in the GOG is substantial. Consequently, Cynoscion species in the GOG may be highly divergent in ecological habits, which would have important management implications, but further ecological research is needed. This study provides a first glimpse into the major patterns of morphological diversification in the Cynoscion group.

This is a preview of subscription content, access via your institution.

References

  1. Aguirre, W.E. 2000. Phylogenetic vs. ecophenotypic influences on interspecific variability of sagittae in the genera Cynoscion and Isopisthus (Teleostei: Sciaenidae). M.Sc. Thesis, Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi. 144 pp

  2. P. Béarez (1996) ArticleTitleLista de los peces marinos del Ecuador continental Revue Biologie Tropicale 44 731–741

    Google Scholar 

  3. P. Béarez (2001) ArticleTitleDescription of a new weakfish, Cynoscion nortoni, from Ecuador with a note on the distribution of Umbra bussingi Revista Biologie Tropicale 1 59–65

    Google Scholar 

  4. P. Bentzen J.D. McPhail (1984) ArticleTitleEcology and evolution of sympatric sticklebacks (Gasterosteus): specialization for alternative trophic niches in the Enos Lake species pair Canadian Journal of Zoology 62 2280–2286

    Google Scholar 

  5. Bookstein, F.L., B. Chernoff, R.L. Elder, J.M. Jr. Humphries, G.R. Smith & R.E. Strauss. 1985. Morphometrics in evolutionary biology. The Academy of Natural Sciences of Philadelphia, Special Publication 15. 277 pp

  6. Byers, S.M. 1981. Trophic relationships of two sympatric sciaenid fishes, Cynoscion arenarius and Cynoscion nothus, in the north central Gulf of Mexico. M. Sc. Thesis, University of Southern Mississippi, Hattiesburg, MS. 70 pp

  7. Chao, N.L. 1978. A basis for classifying western Atlantic Sciaenidae (Teleostei: Perciformes). NOAA Technical Report Circular 415. 64 pp

  8. N.L. Chao (1995) Sciaenidae W. Fischer F. Krupp W. Schneider W. Sommer K.E. Carpenter V.H. Niem (Eds) Guia Fao para la Identificacion de Especies para los Fines de la Pesca. Pacific-centro Oriental. Volumen III, Vertebrados – Parte II FAO Roma 1427–1518

    Google Scholar 

  9. N.L. Chao (2002) Sciaenidae K.E. Carpenter (Eds) The living marine resources of the western Central Atlantic. Volume 2: Bony fishes, part 2 (Opistognathidae to Molidae), sea turtles and marine mammals. FAO species identification guide for fishery purposes and American Society of Ichthyologists and Herpetologists Special Publication No. 5 FAO Rome 1583–1653

    Google Scholar 

  10. J.F. Cordes J.E. Graves (2003) ArticleTitleInvestigation of congeneric hybridization in and stock structure of weakfish (Cynoscion regalis) inferred from analyses of nuclear and mitochondrial loci Fisheries Bulletin 101 443–450

    Google Scholar 

  11. J.G. Ditty M. Bourgeois R. Kasprzak M. Konikoff (1991) ArticleTitleLife history and ecology of sand seatrout Cynoscion arenarius Ginsburg, in the northern Gulf of Mexico: a review Northeast Gulf Science 12 35–47

    Google Scholar 

  12. M.E. Douglas W.J. Matthews (1992) ArticleTitleDoes Morphology Predict Ecology – Hypothesis-Testing within a Fresh-Water Stream Fish Assemblage Oikos 65 213–224

    Google Scholar 

  13. T.J. Ehlinger D.S. Wilson (1988) ArticleTitleComplex foraging polymorphism in bluegill sunfish Proceedings of the National Academy of Sciences 85 1878–1882 Occurrence Handle1:STN:280:DC%2BC3cnivVertQ%3D%3D Occurrence Handle10.1073/pnas.85.6.1878

    CAS  Article  Google Scholar 

  14. I. Ginsburg (1931) ArticleTitleOn the difference in the habitat and the size of Cynoscion arenarius and C. nothus Copeia 1931 144 Occurrence Handle10.2307/1437348

    Article  Google Scholar 

  15. S.J. Gould R.C. Lewontin (1979) ArticleTitleThe spandrels of San Marco and the Panglossian paradigm Proceedings of the Royal Society of London B 205 581–598 Occurrence Handle1:STN:280:DyaL3c%2FnvFyrsw%3D%3D

    CAS  Google Scholar 

  16. Guest, W.C. & G. Gunter. 1958. The sea trout or weakfishes (Genus Cynoscion) of the Gulf of Mexico. Gulf States Marine Fisheries Commission Technical Summary No. 1. 40 pp

  17. M. Herrera M. Peralta (1999) ArticleTitleAspectos biológicos – pesqueros de la corvina plateada Instituto Nacional de Pesca, Guayaquil, Ecuador, Boletín Científico y Técnico 17 1–25

    Google Scholar 

  18. M. Herrera P. Solís-Coello H. Vicuña P. Macías D. Coello O. Moya M. Luzuriaga E. Elías (2001) ArticleTitleEstimación de la biomasa de los recursos demersales en la plataforma continental del Ecuador durante Julio de 1999 Instituto Nacional de Pesca, Guayaquil, Ecuador, Boletín Científico y Técnico 18 1–112

    Google Scholar 

  19. S.F. Hildebrand (1946) A descriptive catalog of the shore fishes of Peru. United States National Museum Bulletin 189 Smithsonian Institution Washington D.C 530

    Google Scholar 

  20. H.D. Hoese R.H. Moore (1998) Fishes of the Gulf of Mexico Texas A & M University Press College Station 422

    Google Scholar 

  21. J.M. Lattin J.D. Carroll P.E. Green (2003) Analyzing multivariate data Brooks/Cole, Thomson Learning, Inc. Pacific Grove, CA 556

    Google Scholar 

  22. G.V. Lauder E.G. Drucker (2004) ArticleTitleMorphology and experimental hydrodynamics of fish fin control surfaces IEEE Journal of Oceanic Engineering 29 556–571

    Google Scholar 

  23. G.V. Lauder J.C. Nauen E.G. Drucker (2002) ArticleTitleExperimental hydrodynamics and evolution: function of median fins in ray-finned fishes Integrative & Comparative Biology 42 1009–1017

    Google Scholar 

  24. J.B. Losos (1990) ArticleTitleThe evolution of form and function: morphology and locomotor performance in West Indian Anolis lizards Evolution 44 1189–1203 Occurrence Handle28563896

    PubMed  Google Scholar 

  25. R.H. MacArtur R. Levins (1967) ArticleTitleThe limiting similarity, convergence, and divergence of coexisting species American Naturalist 101 377–385

    Google Scholar 

  26. C. Marínde López F. Ormaza Gónzalez L. Arriaga Ochoa (1999) Estadísticas de los desembarques pesqueros en Ecuador 1985–1997 Instituto Nacional de Pesca Guayaquil, Ecuador Edición Especial 152

    Google Scholar 

  27. Mercer, L.P. 1989. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Gulf of Mexico). Weakfish. Coastal Ecology Group Waterways Experimental Station, U.S. Fish and Wildlife Service, Biological Report 82 (11.109)

  28. G.V. Nikolsky (1963) The ecology of fishes Academic Press London 352

    Google Scholar 

  29. P.J. Parks M. Bonifaz (1994) ArticleTitleNonsustainable use of renewable resources: mangrove deforestation and mariculture in Ecuador Marine Resource Economics 9 1–18

    Google Scholar 

  30. Paschall, R.L., Jr. 1986. Biochemical systematics of the seatrouts of the western Atlantic, genus Cynoscion. M. Sc. Thesis, University of New Orleans, Louisiana. 99 pp

  31. Patillo, M.E., T.E. Czapla, D.M. Nelson & M.E. Monaco. 1997. Distribution and abundance of fishes and invertebrates in Gulf of Mexico estuaries, Volume II: species life history summaries. ELMR Rep. No. 11, NOAA/NOS Strategic Environmental Assessments Division, Silver Spring, Maryland. 377 pp

  32. F. Pesantes Vigano (1998) Comportamiento temporal y espacial de las características físicas, químicas y biológicas del Golfo de Guayaquil y sus afluentes Daule y Babahoyo entre 1994–1996 Instituto Nacional de Pesca, Edicion Especial Guayaquil, Ecuador 420

    Google Scholar 

  33. R.E. Ricklefs D.B. Miles (1994) Ecological and evolutionary inferences from morphology: an ecological perspective P.C. Wainwright S.M. Reilly (Eds) Ecological morphology, integrative organismal biology The University of Chicago Press Chicago 13–41

    Google Scholar 

  34. K. Sasaki (1989) ArticleTitlePhylogeny of the family Sciaenidae, with notes on its zoogeography (Teleostei, Perciformes) Memoirs of the Faculty of Fisheries, Hokkaido University 36 1–137

    Google Scholar 

  35. T.W. Schoener (1974) ArticleTitleResource partitioning in ecological communities Science 185 27–39 Occurrence Handle1:STN:280:DC%2BC3cvgslehtQ%3D%3D Occurrence Handle17779277

    CAS  PubMed  Google Scholar 

  36. W. Schwarzhans (1993) A comparative morphological treatise of recent and fossil otoliths of the family Sciaenidae (Perciformes). Piscium catalogus: Part Otolithi Piscium NumberInSeriesVol. I. Verlag Dr. Freidrich Pfeil Munchen 245

    Google Scholar 

  37. R.L. Shipp (1986) Dr. Bob Shipp’s guide to the fishes of the Gulf of Mexico Marine Environmental Sciences Consortium of Alabama, Dauphin Island Sea Laboratory Dauphin Island Alabama 256

    Google Scholar 

  38. Sutter, F.C. & T.D. McIlwain. 1987. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Gulf of Mexico). Sand seatrout and silver seatrout. Coastal Ecology Group Waterways Experimental Station, U.S. Fish and Wildlife Service, Biological Report 82 (11.72)

  39. D.C. Tabb (1961) A contribution to the biology of the spotted seatrout, Cynoscion nebulosus (Cuvier) of east-central Florida Institute of Marine Sciences of the University of Miami Technical Series No. 35 Miami 24

    Google Scholar 

  40. P.C. Wainwright (1988) ArticleTitleMorphology and Ecology: Functional basis of feeding constraints in Caribbean Labrid Fishes Ecology 69 635–645

    Google Scholar 

  41. P.W. Webb (1984) ArticleTitleBody form, locomotion and foraging in aquatic vertebrates American Zoologist 24 107–120

    Google Scholar 

  42. M.P. Weinstein R.W. Yerger (1976) ArticleTitleProtein taxonomy of the Gulf of Mexico and Atlantic Ocean seatrouts, genus Cynoscion Fisheries Bulletin 74 599–607 Occurrence Handle1:CAS:528:DyaE28XlsFKrs7k%3D

    CAS  Google Scholar 

  43. Yoong, F. & B. Reinoso. 1999. Biodiversidad del estuario interior del Golfo de Guayaquil, Instituto Nacional de Pesca, Guayaquil, Ecuador, Boletín Científico y Técnico 17: 1–32

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Windsor E. Aguirre.

Additional information

1Bryant D., E. Rodenburg, T. Cox & D. Nielsen. 1995. Coastlines at Risk: an Index of Potential Development-Related Threats to Coastal Ecosystems. WRI Indicator Brief, World Resources Institute, Washington, D.C.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aguirre, W.E., Shervette, V.R. Morphological diversity of the Cynoscion group (Perciformes: Sciaenidae) in the Gulf of Guayaquil region, Ecuador: A comparative approach. Environ Biol Fish 73, 403–413 (2005). https://doi.org/10.1007/s10641-005-2227-3

Download citation

Keywords

  • weakfish
  • estuaries
  • tropical eastern Pacific
  • morphometrics
  • evolutionary diversification