Scarcity and Safe Operating Spaces: The Example of Natural Forests

Abstract

Scientists suggest placing planetary boundaries on human-induced threats to key Earth system sinks and resources. Such boundaries define a “safe operating space” on depletion and pollution. Treating any remaining “space” as a depletable economic asset allows derivation of optimal and actual rules for depletion. We apply this analysis to natural forests, and find that the critical asset is tropical forests. The size of the safe operating space and assumptions about the annual rate of tropical deforestation matter significantly. In the most critical scenario, actual depletion could occur in 11–21 years, whereas optimal depletion is 65 years. The optimal unit rental tax equates the actual price with the optimal price path. The tax rate and its amount vary with the depletion scenario and increases over time. However, if the environmental benefits of tropical forests are sufficiently large, the remaining safe operating space should be preserved indefinitely.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    In earlier literature (e.g., see El Serafy 1989; Hartwick and Hageman 1993), this accounting price was often referred to as the unit or marginal user cost. Because all other assets in the economy are assumed to be exogenously determined, the safe operating space \(S\left( t \right)\) only affects its own capitalized value \(V\left( t \right)\). See Wei (2015) and Barbier and Burgess (2017) for further discussion.

  2. 2.

    This scenario also conforms to the business-as-usual projection of tropical deforestation over 2013-2050 by Busch and Engelmann (2018), who project a fairly constant rate of average annual tropical forest loss, especially over the initial decades.

References

  1. Arrow KJ, Fisher AC (1974) Environmental preservation, uncertainty, and irreversibility. Q J Econ 88(2):312–319

    Article  Google Scholar 

  2. Barbier EB (2019) The concept of natural capital. Oxf Rev Econ Policy 35(1):14–36

    Article  Google Scholar 

  3. Barbier EB, Burgess JC (2017) Depletion of the global carbon budget: a user cost approach. Environ Dev Econ 22(6):658–673

    Article  Google Scholar 

  4. Betts MG, Wolf C, Ripple WJ, Phalan B, Millers KA, Duarte A, Butchart SHM, Levi T (2017) Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547:441–444

    Article  Google Scholar 

  5. Busch J, Engelmann J (2018) Cost-effectiveness of reducing emissions from tropical deforestation, 2016–2050. Environ Res Lett 13:015001. https://doi.org/10.1088/1748-9326/aa907c

    Article  Google Scholar 

  6. Busch J, Ferretti-Gallon K, Engelmann J, Wright M, Austin KG, Stolle F, Turubanova S, Potapov PV, Margona B, Hansen MC, Baccini A (2015) Reductions in emissions from deforestation from Indonesia’s moratorium on new oil palm, timber, and logging concessions. Proc Natl Acad Sci 112:1328–1333

    Article  Google Scholar 

  7. Cardoso da Silva JM, Prasad S, Felizola Diniz-Filho JA (2017) The impact of deforestation, urbanization, public investment, and agriculture on human welfare in the Brazilian Amazon. Land Use Policy 65:135–142

    Article  Google Scholar 

  8. Carrasco LR, Nghiem TPL, Chen Z, Barbier EB (2017) Unsustainable development pathways caused by tropical deforestation. Sci Adv 3(7):e1602602

    Article  Google Scholar 

  9. Caviglia-Harris JL, Sills EO, Bell A, Harris D, Mullan K, Roberts D (2016) Busting the boom–bust pattern of development in the Brazilian Amazon. World Dev 79:82–96

    Article  Google Scholar 

  10. Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc Natl Acad Sci USA 114:E6089–E6096

    Article  Google Scholar 

  11. Crépin A-S, Folke C (2014) The economy, the biosphere and planetary boundaries: towards biosphere economics. Int Rev Environ Econ 8:57–100

    Article  Google Scholar 

  12. d’Annunzio R, Sandker M, Finegold Y, Min A (2015) Projecting global forest area towards 2030. Forest Ecol Manag 352:124–133

    Article  Google Scholar 

  13. Dasgupta P, Mäler K-G (2000) Net national product, wealth, and social well-being. Environ Dev Econ 5:69–93

    Article  Google Scholar 

  14. de Groot R, Brander L, van der Ploeg S, Costanza R, Bernard F, Braat L, Christie M, Crossman N, Ghermandi A, Hein L et al (2012) Global estimates of the value of ecosystems and their services in monetary units. Ecosyst Serv 1:50–61

    Article  Google Scholar 

  15. Dinerstein E, Olson D, Joshi A, Vynne C, Burgess ND et al (2017) An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67:534–545

    Article  Google Scholar 

  16. El Serafy S (1989) Chapter 3: The proper calculation of income from depletable natural resources. In: Ahmad Y, El Serafy S, Lutz E (eds) Environmental accounting for sustainable development. The World Bank, Washington, pp 10–18

    Google Scholar 

  17. Food and Agriculture Organization (FAO) of the United Nations (2012) FRA 2015 terms and definitions. Forest Resources Assessment Working Paper 180. FAO, Rome

    Google Scholar 

  18. Food and Agriculture Organization (FAO) of the United Nations (2015) Global Forest Resources Assessment 2015. FAO, Rome

    Google Scholar 

  19. Food and Agriculture Organization (FAO) of the United Nations (2017) Global Forest Resources Assessment 2015 data. FAO, Rome. http://www.fao.org/forest-resources-assessment/explore-data/en. Accessed 15 Nov 2017

  20. Gerton D, Hoff H, Rockström J, Jägermeyr J, Kummu M, Pastor AV (2013) Towards a revised planetary boundary for consumptive freshwater use: the role of environmental flow requirements. Curr Opin Sustain 5:551–558

    Article  Google Scholar 

  21. Gollier C, Treich N (2003) Decision-making under scientific uncertainty: the economics of the precautionary principle. J Risk Uncertain 27(1):77–103

    Article  Google Scholar 

  22. Gollier C, Jullien B, Treich N (2000) Scientific progress and irreversibility: an economic interpretation of the ‘Precautionary Principle’. J Public Econ 75:229–253

    Article  Google Scholar 

  23. Hamilton K (2016) Measuring sustainability in the UN system of environmental-economic accounting. Environ Resour Econ 64(1):25–36

    Article  Google Scholar 

  24. Hamilton K, Ruta G (2009) Wealth accounting, exhaustible resources and social welfare. Environ Resour Econ 42(1):53–64

    Article  Google Scholar 

  25. Hartwick J, Hageman A (1993) Chapter 12: Economic depreciation of mineral stocks and the contribution of El Serafy. In: Lutz E (ed) Toward improved accounting for the environment. The World Bank, Washington, pp 211–235

    Google Scholar 

  26. Henry Claude (1974) Investment decisions under uncertainty: the” irreversibility effect. Am Econ Rev 64(6):1006–1012

    Google Scholar 

  27. Iverson T, Perrings C (2012) Precaution and proportionality in the management of global environmental change. Glob Environ Change 22:161–177

    Article  Google Scholar 

  28. Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E (2015) Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. Forest Ecol Manag 352:9–20

    Article  Google Scholar 

  29. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf WS, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci USA 105:1786–1793

    Article  Google Scholar 

  30. Mace GM, Reyers B, Alkemade R, Biggs R, Chapin FS III, Cornell SE, Díaz S, Jennings S, Leadley P, Mumby PJ et al (2014) Approaches to defining a planetary boundary for biodiversity. Glob Environ Change 28:289–297

    Article  Google Scholar 

  31. Morales-Hidalgo D, Oswalt SN, Somnathan E (2015) Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. Forest Ecol Manag 352:68–77

    Article  Google Scholar 

  32. Newbold T, Hudson LN, Arnell AP, Contu S, De Palma A, Ferrier S, Hill SLL, Hoskins AJ, Lysenko I, Phillips HRP et al (2016) Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessmet. Science 353:288–291

    Article  Google Scholar 

  33. Rockström J, Steffen W, Noone K, Persson A, Chapin AS III, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ et al (2009) A safe operating space for humanity. Nature 461:472–475

    Article  Google Scholar 

  34. Running SW (2012) A measurable planetary boundary for the biosphere. Science 337:1458–1459

    Article  Google Scholar 

  35. Schmidt S, Manceur AM, Seppelt R (2016) Uncertainty of monetary valued ecosystem services—value transfer functions for global mapping. PLoS ONE 11(3):e0148524. https://doi.org/10.1371/journal.pone.0148524

    Article  Google Scholar 

  36. Sims C, Finnoff D (2016) Opposing irreversibilities and tipping point uncertainty. J Assoc Environ Resour Econ 3(4):985–1022

    Google Scholar 

  37. Smith VK (2017) Environmental economics and the anthropocene. Oxf Res Encycl Environ Sci. https://doi.org/10.1093/acrefore/9780199389414.013.386

    Article  Google Scholar 

  38. Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit EA et al (2015) Planetary boundaries: guiding human development on a changing planet. Science 347:1259855

    Article  Google Scholar 

  39. Sterner T, Barbier EB, Bateman I, van den Bijgaart I, Crépin A-S, Edenhofer O, Fisher C, Habla W, Hassler J, Johnansson-Stenman O, Lange A, Polasky S, Rockström J, Smith HG, Steffen W, Wagner G, Wilen J, Alpízar F, Azar C, Carless D, Chávez C, Coria J, Engström G, Jagers SC, Köhlin G, Löfgren A, Pleijel H, Robinson A (2019) Policy design for the anthropocene. Nat Sustain 2(1):14–21

    Article  Google Scholar 

  40. Vardas G, Xepapadeas A (2010) Model uncertainty, ambiguity and the precautionary principle: implications for biodiversity management. Environ Resour Econ 45:379–404

    Article  Google Scholar 

  41. Wei T (2015) Accounting price for an exhaustible resource: a comment. Environ Resour Econ 60(4):579–581

    Article  Google Scholar 

  42. Weitzman Martin L (2011) Fat-tailed uncertainty in the economics of catastrophic climate change. Rev Environ Econ Policy 5(2):275–292

    Article  Google Scholar 

  43. Weitzman Martin L (2013) A precautionary tale of uncertain tail fattening. Environ Resour Econ 55:159–173

    Article  Google Scholar 

  44. World Bank (2011) The changing wealth of nations: measuring sustainable development in the new millennium. World Bank, Washington

    Google Scholar 

  45. World Bank (2017) World development indicators. World Bank, Washington. https://data.worldbank.org/data-catalog/world-development-indicators. Accessed 9 Jan 2018

Download references

Acknowledgements

We are grateful to research assistance provided by Hwayoung Jeon.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edward B. Barbier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barbier, E.B., Burgess, J.C. Scarcity and Safe Operating Spaces: The Example of Natural Forests. Environ Resource Econ 74, 1077–1099 (2019). https://doi.org/10.1007/s10640-019-00360-9

Download citation

Keywords

  • Anthropocene
  • Economic depreciation
  • Optimal depletion
  • Planetary boundaries
  • Safe operating space
  • Scarcity
  • Tropical forest
  • User cost

JEL Classification

  • Q01
  • Q56
  • Q57