Scarcity and Safe Operating Spaces: The Example of Natural Forests

  • Edward B. BarbierEmail author
  • Joanne C. Burgess


Scientists suggest placing planetary boundaries on human-induced threats to key Earth system sinks and resources. Such boundaries define a “safe operating space” on depletion and pollution. Treating any remaining “space” as a depletable economic asset allows derivation of optimal and actual rules for depletion. We apply this analysis to natural forests, and find that the critical asset is tropical forests. The size of the safe operating space and assumptions about the annual rate of tropical deforestation matter significantly. In the most critical scenario, actual depletion could occur in 11–21 years, whereas optimal depletion is 65 years. The optimal unit rental tax equates the actual price with the optimal price path. The tax rate and its amount vary with the depletion scenario and increases over time. However, if the environmental benefits of tropical forests are sufficiently large, the remaining safe operating space should be preserved indefinitely.


Anthropocene Economic depreciation Optimal depletion Planetary boundaries Safe operating space Scarcity Tropical forest User cost 

JEL Classification

Q01 Q56 Q57 



We are grateful to research assistance provided by Hwayoung Jeon.


  1. Arrow KJ, Fisher AC (1974) Environmental preservation, uncertainty, and irreversibility. Q J Econ 88(2):312–319CrossRefGoogle Scholar
  2. Barbier EB (2019) The concept of natural capital. Oxf Rev Econ Policy 35(1):14–36CrossRefGoogle Scholar
  3. Barbier EB, Burgess JC (2017) Depletion of the global carbon budget: a user cost approach. Environ Dev Econ 22(6):658–673CrossRefGoogle Scholar
  4. Betts MG, Wolf C, Ripple WJ, Phalan B, Millers KA, Duarte A, Butchart SHM, Levi T (2017) Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547:441–444CrossRefGoogle Scholar
  5. Busch J, Engelmann J (2018) Cost-effectiveness of reducing emissions from tropical deforestation, 2016–2050. Environ Res Lett 13:015001. CrossRefGoogle Scholar
  6. Busch J, Ferretti-Gallon K, Engelmann J, Wright M, Austin KG, Stolle F, Turubanova S, Potapov PV, Margona B, Hansen MC, Baccini A (2015) Reductions in emissions from deforestation from Indonesia’s moratorium on new oil palm, timber, and logging concessions. Proc Natl Acad Sci 112:1328–1333CrossRefGoogle Scholar
  7. Cardoso da Silva JM, Prasad S, Felizola Diniz-Filho JA (2017) The impact of deforestation, urbanization, public investment, and agriculture on human welfare in the Brazilian Amazon. Land Use Policy 65:135–142CrossRefGoogle Scholar
  8. Carrasco LR, Nghiem TPL, Chen Z, Barbier EB (2017) Unsustainable development pathways caused by tropical deforestation. Sci Adv 3(7):e1602602CrossRefGoogle Scholar
  9. Caviglia-Harris JL, Sills EO, Bell A, Harris D, Mullan K, Roberts D (2016) Busting the boom–bust pattern of development in the Brazilian Amazon. World Dev 79:82–96CrossRefGoogle Scholar
  10. Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc Natl Acad Sci USA 114:E6089–E6096CrossRefGoogle Scholar
  11. Crépin A-S, Folke C (2014) The economy, the biosphere and planetary boundaries: towards biosphere economics. Int Rev Environ Econ 8:57–100CrossRefGoogle Scholar
  12. d’Annunzio R, Sandker M, Finegold Y, Min A (2015) Projecting global forest area towards 2030. Forest Ecol Manag 352:124–133CrossRefGoogle Scholar
  13. Dasgupta P, Mäler K-G (2000) Net national product, wealth, and social well-being. Environ Dev Econ 5:69–93CrossRefGoogle Scholar
  14. de Groot R, Brander L, van der Ploeg S, Costanza R, Bernard F, Braat L, Christie M, Crossman N, Ghermandi A, Hein L et al (2012) Global estimates of the value of ecosystems and their services in monetary units. Ecosyst Serv 1:50–61CrossRefGoogle Scholar
  15. Dinerstein E, Olson D, Joshi A, Vynne C, Burgess ND et al (2017) An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67:534–545CrossRefGoogle Scholar
  16. El Serafy S (1989) Chapter 3: The proper calculation of income from depletable natural resources. In: Ahmad Y, El Serafy S, Lutz E (eds) Environmental accounting for sustainable development. The World Bank, Washington, pp 10–18Google Scholar
  17. Food and Agriculture Organization (FAO) of the United Nations (2012) FRA 2015 terms and definitions. Forest Resources Assessment Working Paper 180. FAO, RomeGoogle Scholar
  18. Food and Agriculture Organization (FAO) of the United Nations (2015) Global Forest Resources Assessment 2015. FAO, RomeGoogle Scholar
  19. Food and Agriculture Organization (FAO) of the United Nations (2017) Global Forest Resources Assessment 2015 data. FAO, Rome. Accessed 15 Nov 2017
  20. Gerton D, Hoff H, Rockström J, Jägermeyr J, Kummu M, Pastor AV (2013) Towards a revised planetary boundary for consumptive freshwater use: the role of environmental flow requirements. Curr Opin Sustain 5:551–558CrossRefGoogle Scholar
  21. Gollier C, Treich N (2003) Decision-making under scientific uncertainty: the economics of the precautionary principle. J Risk Uncertain 27(1):77–103CrossRefGoogle Scholar
  22. Gollier C, Jullien B, Treich N (2000) Scientific progress and irreversibility: an economic interpretation of the ‘Precautionary Principle’. J Public Econ 75:229–253CrossRefGoogle Scholar
  23. Hamilton K (2016) Measuring sustainability in the UN system of environmental-economic accounting. Environ Resour Econ 64(1):25–36CrossRefGoogle Scholar
  24. Hamilton K, Ruta G (2009) Wealth accounting, exhaustible resources and social welfare. Environ Resour Econ 42(1):53–64CrossRefGoogle Scholar
  25. Hartwick J, Hageman A (1993) Chapter 12: Economic depreciation of mineral stocks and the contribution of El Serafy. In: Lutz E (ed) Toward improved accounting for the environment. The World Bank, Washington, pp 211–235Google Scholar
  26. Henry Claude (1974) Investment decisions under uncertainty: the” irreversibility effect. Am Econ Rev 64(6):1006–1012Google Scholar
  27. Iverson T, Perrings C (2012) Precaution and proportionality in the management of global environmental change. Glob Environ Change 22:161–177CrossRefGoogle Scholar
  28. Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E (2015) Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. Forest Ecol Manag 352:9–20CrossRefGoogle Scholar
  29. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf WS, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci USA 105:1786–1793CrossRefGoogle Scholar
  30. Mace GM, Reyers B, Alkemade R, Biggs R, Chapin FS III, Cornell SE, Díaz S, Jennings S, Leadley P, Mumby PJ et al (2014) Approaches to defining a planetary boundary for biodiversity. Glob Environ Change 28:289–297CrossRefGoogle Scholar
  31. Morales-Hidalgo D, Oswalt SN, Somnathan E (2015) Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. Forest Ecol Manag 352:68–77CrossRefGoogle Scholar
  32. Newbold T, Hudson LN, Arnell AP, Contu S, De Palma A, Ferrier S, Hill SLL, Hoskins AJ, Lysenko I, Phillips HRP et al (2016) Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessmet. Science 353:288–291CrossRefGoogle Scholar
  33. Rockström J, Steffen W, Noone K, Persson A, Chapin AS III, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ et al (2009) A safe operating space for humanity. Nature 461:472–475CrossRefGoogle Scholar
  34. Running SW (2012) A measurable planetary boundary for the biosphere. Science 337:1458–1459CrossRefGoogle Scholar
  35. Schmidt S, Manceur AM, Seppelt R (2016) Uncertainty of monetary valued ecosystem services—value transfer functions for global mapping. PLoS ONE 11(3):e0148524. CrossRefGoogle Scholar
  36. Sims C, Finnoff D (2016) Opposing irreversibilities and tipping point uncertainty. J Assoc Environ Resour Econ 3(4):985–1022Google Scholar
  37. Smith VK (2017) Environmental economics and the anthropocene. Oxf Res Encycl Environ Sci. CrossRefGoogle Scholar
  38. Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit EA et al (2015) Planetary boundaries: guiding human development on a changing planet. Science 347:1259855CrossRefGoogle Scholar
  39. Sterner T, Barbier EB, Bateman I, van den Bijgaart I, Crépin A-S, Edenhofer O, Fisher C, Habla W, Hassler J, Johnansson-Stenman O, Lange A, Polasky S, Rockström J, Smith HG, Steffen W, Wagner G, Wilen J, Alpízar F, Azar C, Carless D, Chávez C, Coria J, Engström G, Jagers SC, Köhlin G, Löfgren A, Pleijel H, Robinson A (2019) Policy design for the anthropocene. Nat Sustain 2(1):14–21CrossRefGoogle Scholar
  40. Vardas G, Xepapadeas A (2010) Model uncertainty, ambiguity and the precautionary principle: implications for biodiversity management. Environ Resour Econ 45:379–404CrossRefGoogle Scholar
  41. Wei T (2015) Accounting price for an exhaustible resource: a comment. Environ Resour Econ 60(4):579–581CrossRefGoogle Scholar
  42. Weitzman Martin L (2011) Fat-tailed uncertainty in the economics of catastrophic climate change. Rev Environ Econ Policy 5(2):275–292CrossRefGoogle Scholar
  43. Weitzman Martin L (2013) A precautionary tale of uncertain tail fattening. Environ Resour Econ 55:159–173CrossRefGoogle Scholar
  44. World Bank (2011) The changing wealth of nations: measuring sustainable development in the new millennium. World Bank, WashingtonGoogle Scholar
  45. World Bank (2017) World development indicators. World Bank, Washington. Accessed 9 Jan 2018

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of EconomicsColorado State UniversityFort CollinsUSA

Personalised recommendations