The SEEA-Based Integrated Economic-Environmental Modelling Framework: An Illustration with Guatemala’s Forest and Fuelwood Sector

Abstract

This paper develops and operationalizes the integrated economic-environmental modelling (IEEM) platform which integrates environmental data organized under the first international system of environmental economic accounting with a powerful dynamic economy-wide modelling approach. IEEM enables the ex-ante economic analysis of policies on the economy and the environment in a quantitative, comprehensive and consistent framework. IEEM elucidates the two-way interrelationships between the economy and environment, considering how economic activities depend on the environment as a source of inputs and as a sink for their outputs. In addition to standard economic impact indicators such as gross domestic product, income and employment, IEEM generates indicators that describe policy impacts on the use of environmental resources, wealth and environmental quality which together determine prospects for future economic growth and well-being. To illustrate the analytical capabilities of IEEM, the model is calibrated with Guatemala’s SEEA and applied to analysis of its forest and fuelwood sector where negative health and environmental impacts arise from inefficient fuelwood use.

This is a preview of subscription content, log in to check access.

Fig. 1

Source: Authors’ own elaboration

Fig. 2

Source: Authors’ own elaboration

Fig. 3
Fig. 4

Source: Authors’ own elaboration

Fig. 5

Source: Authors’ own elaboration

Fig. 6

Source: Authors’ own elaboration

Fig. 7

Source: Authors’ own elaboration

Notes

  1. 1.

    See Banerjee et al. (2016a, b) for a review of the literature on previous efforts to integrate environmental data into an economy-wide framework, and the advantages of SEEA for economy-wide modelling.

  2. 2.

    The concept of ecosystem services is relevant for IEEM since while the IEEM Platform operationalized here integrates data on provisioning ecosystem services, one of the goals of the IEEM project is to move beyond provisioning services to represent regulating and maintenance services such as climate regulation and erosion mitigation, as well as cultural ecosystem services. This frontier area is discussed in the concluding remarks section.

  3. 3.

    In other contexts, this treatment can also be applied to land used in managed forests.

  4. 4.

    In its full version, IEEM can include various water categories. In the case of Guatemala, registered and non-registered water is distinguished, while non-registered water could be further split between agriculture and non-agriculture uses.

  5. 5.

    See for example: http://www.appropedia.org/Patsari_Cookstove.

  6. 6.

    One type of publically available ecosystem service modelling modules is the InVEST modelling suite developed through the Natural Capital Project (Sharp et al. 2016). Ecosystem service modules for specific ecosystem services can be calibrated for a country and used for generating ecosystem accounts and scenario analysis.

References

  1. Ahmed K, Awe Y, Barnes DF, Cropper ML, Kojima M (2005) Environmental health and traditional fuel use in Guatemala. World Bank, Washington

    Google Scholar 

  2. Arrow K, Dasgupta P, Goulder L, Daily G, Ehrlich P, Heal G, Levin S, Mäler K-G, Schneider S, Starrett D, Walker B (2004) Are we consuming too much? J Econ Perspect 18:147–172

    Article  Google Scholar 

  3. Arrow KJ, Dasgupta P, Goulder LH, Mumford KJ, Oleson K (2012) Sustainability and the measurement of wealth. Environ Dev Econ 17:317–353

    Article  Google Scholar 

  4. Banco de Guatemala & IARNA-URL (2009) Cuenta Integrada del Bosque: Bases Teóricas, Conceptuales y Metodológicas. Ciudad de Guatemala: Banco de Guatemala & IARNA-URL

  5. Banerjee O, Cicowiez M, Vargas R, Horridge M (2016a). The integrated economic-environmental modelling framework: an illustration with Guatemala’s forest and fuelwood sectors. IDB working paper series no. 757. Washington DC, Inter-American Development Bank

  6. Banerjee O, Cicowiez M, Horridge JM, Vargas R (2016b) A conceptual framework for integrated economic-environmental modelling. J Environ Dev 25(3):276–305

    Article  Google Scholar 

  7. Banerjee O, Cicowiez M, Dudek S, Crossman N, Horridge M (2017a) The integrated economic-environmental modeling platform project. In Presented at the second forum on natural capital accounting for better policy, November 22 and 23, 2017. The Hague, The Netherlands

  8. Banerjee O, Cicowiez M, Dudek S, Masozera M, Alavalapati JRR (2017b) Economic and land use impacts of Rwanda’s green growth strategy: an application of the integrated economic-environmental modelling platform. In: GTAP (ed) GTAP 20th annual conference on global economic analysis. Purdue University, West Lafayette

  9. Bielecki C, Wingenbach G (2014) Rethinking improved cookstove diffusion programs: a case study of social perceptions and cooking choices in rural Guatemala. Energy Policy 66:350–358

    Article  Google Scholar 

  10. Breisinger C, Thomas M, Thurlow J (2009) Social accounting matrices and multiplier analysis: an introduction with exercises. IFPRI, Washington

    Google Scholar 

  11. Cicowiez M, Banerjee O, Vargas R, Horridge M (Forthcoming) Construction of an extended environmental and economic social accounting matrix from a practitioner’s perspective. IDB working paper. Inter-American Development Bank, Washington

  12. Conrad JM (2010) Resource economics. Cambridge University Press, Cambridge

  13. Duflo E, Greenstone M, Hanna R (2008) Indoor air pollution, health and economic well-being. Surv Perspect Integr Environ Soc 1:1–9

    Article  Google Scholar 

  14. EC, IMF, OECD, UN, WB (2009) System of National Accounts 2008. United Nations, New York

    Google Scholar 

  15. GAMS Development Corporation (2013) General Algebraic Modeling System (GAMS) Release 24.2.1. GAMS Development Corporation, Washington DC,

  16. García-Frapolli E, Schilmann A, Berrueta VM, Riojas-Rodríguez H, Edwards RD, Johnson M, Guevara-Sanginés A, Armendariz C, Masera O (2010) Beyond fuelwood savings: valuing the economic benefits of introducing improved biomass cookstoves in the Purépecha region of Mexico. Ecol Econ 69(12):2598–2605

    Article  Google Scholar 

  17. Giesecke JA, Madden JR (2013) Regional computable general equilibrium modeling. In: Dixon PB, Jorgenson DW (eds) Handbook of computable general equilibrium modeling, chapter 7. North-Holland, Amsterdam, pp 379–475

    Google Scholar 

  18. Global Alliance for Clean Cookstoves (2014) Plan de Acción Nacional de Guatemala para Estufas y Combustibles Limpios. Global Alliance for Clean Cookstoves, Guatemala City

    Google Scholar 

  19. Habermehl H (2007) Economic evaluation of the improved household cooking stove dissemination programme in Uganda. GTZ, Eschborn

    Google Scholar 

  20. Harrison WJ, Pearson KR (1996) Computing solutions for large general equilibrium models using GEMPACK. Comput Econ 9: 83–127

  21. Hertel TW, Tyner WE, Birur DK (2010) The global impacts of biofuel mandates. Energy J 31(1):75–100

    Article  Google Scholar 

  22. INAB, Instituto de Agricultura, Recursos Naturales y Ambiente de la Universidad Rafael Landívar [IARNA-URL] & Food and Agriculture Organization [FAO] (2012) Oferta y Demanda de Lena en la República de Guatemala. INAB, IARNA-URL and FAO, Ciudad de Guatemala

  23. Instituto Nacional de Bosques [INAB] (2015) Estrategia Nacional de Producción Sostenible y Uso Eficiente de Leña 2013–2014. INAB, Ciudad de Guatemala

  24. Instituto Nacional de Estadística [INE] (2011) Encuesta Nacional de Condiciones de Vida, ENCOVI 2011. INE, Guatemela City

  25. Jagger P, Shively G (2014) Land use change, fuel use and respiratory health in Uganda. Energy Policy 67:713–726

    Article  Google Scholar 

  26. King B (1985) What is SAM? In: Pyatt G, Round JI (eds) Social accounting matrices: a basis for planning. World Bank, Washington

    Google Scholar 

  27. Lambe F, Ochieng C (2015) Improved cookstoves in Central America: health impacts and uptake. Stockholm Environment Institute, Stockholm

    Google Scholar 

  28. Lofgren H, Harris RL, Robinson S (2002) A standard computable general equilibrium (CGE) model in GAMS, microcomputers in policy research, vol 5. IFPRI, Washington

    Google Scholar 

  29. McCracken JP, Smith KR (1998) Emissions and efficiency of improved woodburning cookstoves in highland Guatemala. Environ Int 24(7):739–747

    Article  Google Scholar 

  30. Millenium Ecosystem Assessment [MA] (2005) Ecosystems and human well-being: synthesis. Island Press, Washington

  31. Ministerio de Minas y Energía [MEM] (2013) Política Energética 2013-2027: Energía para el Desarrollo. Ministerio de Energía y Minas, Guatemala City

  32. Narayanan B, Aguiar A, McDougall R (2015) Global trade, assistance and production: the GTAP 9 data base. GTAP, Purdue University, West Lafayette

    Google Scholar 

  33. Obst C, Eigengraam M (2016) Using the SEEA experimental ecosystem accounting framework to advance I-O and CGE integrated environmental-economic modelling. In: Presented at the 19th annual conference on global economic analysis, Washington, DC, June 2016

  34. Pikitch EK, Santora C, Babcock EA, Bakun A, Bonfil R, Conover DO, Dayton P, Doukakis P, Fluharty D, Heneman B, Houde ED, Link J, Livingston PA, Mangel M, McAllister MK, Pope J, Sainsbury KJ (2004) Ecosystem-based fishery management. Science 305:346–347

    Article  Google Scholar 

  35. Polasky S, Bryant B, Hawthorne P, Johnson J, Keeler B, Pennington D (2015) Inclusive wealth as a metric of sustainable development. Ann Rev Environ Resour 40:445–466

    Article  Google Scholar 

  36. Round J (2003) Constructing SAMs for development policy analysis: lessons learned and challenges ahead. Econ Syst Res 15(2):161–183

    Article  Google Scholar 

  37. SEGEPLAN (2010) Tercer Informe de Avances en el Cumplimiento de los Objetivos d Desarrollo del Milenio. SEGEPLAN, Guatemala City

    Google Scholar 

  38. Sharp R, Tallis HT, Ricketts T, Guerry AD, Wood SA, Chaplin-Kramer R, Nelson E, Ennaanay D, Wolny S, Olwero N, Vigerstol K, Pennington D, Mendoza G, Aukema J, Foster J, Forrest J, Cameron D, Arkema K, Lonsdorf E, Kennedy C, Verutes G, Kim CK, Guannel G, Papenfus M, Toft J, Marsik M, Bernhardt J, Griffin R, Glowinski K, Chaumont N, Perelman A, Lacayo M Mandle L, Hamel P, Vogl AL, Rogers L, Bierbower W, Denu D, Douglass J (2016) InVEST +VERSION+ User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund

  39. Smith KR, McCracken JP, Weber MW, Hubbard A, Jenny A, Thompson LM et al (2011) Effect of reduction in household air pollution on childhood pneumonia in Guatemala (RESPIRE): a randomised controlled trial. The Lancet 378(9804):1717–1726

    Article  Google Scholar 

  40. Smith KR, Frumkin H, Balakrishnan K, Butler CD, Chafe ZA, Fairlie I et al (2013) Energy and human health. Ann Rev Public Health 34(1):159–188

    Article  Google Scholar 

  41. Smith-Sivertsen T, Díaz E, Pope D, Lie RT, Díaz A, McCracken J et al (2009) Effect of reducing indoor air pollution on women’s respiratory symptoms and lung function: the RESPIRE randomized trial, Guatemala. Am J Epidemiol 170(2):211–220

    Article  Google Scholar 

  42. Stiglitz JE, Sen AK, Fitoussi JP (2010) Mis-measuring our lives: why GDP doesn’t add up. New Press, New York

    Google Scholar 

  43. TEEB (2010) The economics of ecosystems and biodiversity: ecological and economic foundations. Earthscan, London

    Google Scholar 

  44. United Nations Environment Program, United Nations Statistical Division & Convention on Bioological Diversity Project (2017) SEEA experimental ecosystem accounting: technical recommendations. Consultation Draft. UNEP, UNSD, CBD, Geneva

  45. United Nations, European Commission, Food and Agriculture Organization, International Monetary Fund, Organisation for Economic Cooperation and Development & The World Bank (2014) System of environmental economic accounting 2012-central framework. UN, EC, FAO, IMF, OECD and the World Bank, New York

  46. United Nations, European Commission, International Monetary Fund, Organisation for Economic Cooperation and Development & World Bank (2005) Handbook of national accounting: integrated environmental and economic accounting 2003. Studies in methods, series F, no. 61, rev. 1, Glossary. United Nations, New York

  47. Vardon M, Burnett P, Dovers S (2016) The accounting push and the policy pull: balancing environment and economic decisions. Ecol Econ 124:145–152

    Article  Google Scholar 

  48. Verburg PH, Eickhout B, Van Meijl H (2008) A multi-scale, multi-model approach for analyzing the future dynamics of European land use. Ann Reg Sci 42:57–77

    Article  Google Scholar 

  49. World Bank (2005) Where is the wealth of nations? Measuring capital for the 21st century. World Bank, Washington

  50. World Bank (2011) The changing wealth of nations. Measuring sustainable development in the New Millennium. World Bank, Washington

    Google Scholar 

Download references

Acknowledgements

This work was funded by the BIO Program of the Inter-American Development Bank.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Onil Banerjee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 365 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Banerjee, O., Cicowiez, M., Vargas, R. et al. The SEEA-Based Integrated Economic-Environmental Modelling Framework: An Illustration with Guatemala’s Forest and Fuelwood Sector. Environ Resource Econ 72, 539–558 (2019). https://doi.org/10.1007/s10640-017-0205-9

Download citation

Keywords

  • Ex-ante economic impact evaluation
  • Evidence-based policy design
  • System of environmental-economic accounting
  • Dynamic computable general equilibrium model
  • System of national accounting
  • Economic and environmental indicators
  • Wealth
  • Natural capital
  • Ecosystem services