Environmental and Resource Economics

, Volume 68, Issue 4, pp 1087–1109 | Cite as

A Minimax Regret Analysis of Flood Risk Management Strategies Under Climate Change Uncertainty and Emerging Information

  • T. D. van der Pol
  • S. Gabbert
  • H.-P. Weikard
  • E. C. van Ierland
  • E. M. T. Hendrix


This paper studies the dynamic application of the minimax regret (MR) decision criterion to identify robust flood risk management strategies under climate change uncertainty and emerging information. An MR method is developed that uses multiple learning scenarios, for example about sea level rise or river peak flow development, to analyse effects of changes in information on optimal investment in flood protection. To illustrate the method, optimal dike height and floodplain development are studied in a conceptual model, and conventional and adaptive MR solutions are compared. A dynamic application of the MR decision criterion allows investments to be changed after new information on climate change impacts, which has an effect on today’s optimal investments. The results suggest that adaptive MR solutions are more robust than the solutions obtained from a conventional MR analysis of investments in flood protection. Moreover, adaptive MR analysis with multiple learning scenarios is more general and contains conventional MR analysis as a special case.


Minimax regret Flood risk Climate change Adaptive management Flexibility Robust optimisation Learning 



We thank two anonymous reviewers for helpful comments and suggestions. This research project has been supported by the Knowledge for Climate programme, the Netherlands, the Spanish state (Project TIN2015-66680-c2-2-R) and Junta de Andalucía (P11-TIC-7176), in part financed by the European Regional Development Fund (ERDF).


  1. Averbakh I (2000) Minmax regret solutions for minimax optimization problems with uncertainty. Oper Res Lett 27(2):57–65CrossRefGoogle Scholar
  2. Baker E (2005) Uncertainty and learning in a strategic environment: global climate change. Resour Energy Econ 27(1):19–40CrossRefGoogle Scholar
  3. Bellman R (1954) The theory of dynamic programming. Bull Am Math Soc 60(6):503–515CrossRefGoogle Scholar
  4. Ben-Tal A, Ghaoui LE, Nemirovski A (2009) Robust optimization. Princeton University Press, PrincetonCrossRefGoogle Scholar
  5. Bol R (2005) Operation of the Maeslant barrier (storm surge barrier in the Rotterdam New Waterway). In: Fletcher CA, Spencer T (eds) Flooding and environmental challenges for Venice: state of knowledge. Cambridge University Press, Cambridge, pp 311–316Google Scholar
  6. Brekelmans R, den Hertog D, Roos K, Eijgenraam C (2012) Safe dike heights at minimal costs: the nonhomogeneous case. Oper Res 60(6):1342–1355CrossRefGoogle Scholar
  7. Brouwer R, van Ek R (2004) Integrated ecological, economic and social impact assessment of alternative flood control policies in the Netherlands. Ecol Econ 50(1–2):1–21CrossRefGoogle Scholar
  8. Clarke H (2008) Classical decision rules and adaptation to climate change. Aust J Agr Resour Econ 52(4):487–504CrossRefGoogle Scholar
  9. Coles S, Pericchi L (2003) Anticipating catastrophes through extreme value modelling. J Roy Stat Soc C Appl Stat 52(4):405–416CrossRefGoogle Scholar
  10. de Moel H, Aerts JCJH (2011) Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates. Nat Hazards 58(1):407–425CrossRefGoogle Scholar
  11. den Hertog D, Roos K (2008) Computing safe dike heights at minimal costs. RIZA, RI-4772,
  12. Deng Y, Cardin MA, Babovic V, Santhanakrishnan D, Schmitter P, Meshgi A (2013) Valuing flexibilities in the design of urban water management systems. Water Res 47:7162–7174CrossRefGoogle Scholar
  13. Dessai S, Hulme M (2007) Assessing the robustness of adaptation decisions to climate change uncertainties: a case study on water resources management in the East of England. Global Environ Change 17(1):59–72CrossRefGoogle Scholar
  14. Dyer M, Stougie L (2006) Computational complexity of stochastic programming problems. Math Program 106(3):423–432CrossRefGoogle Scholar
  15. Eijgenraam C, Kind J, Bak C, Brekelmans R, den Hertog D et al (2014) Economically efficient standards to protect the Netherlands against flooding. Interfaces 44(1):7–21CrossRefGoogle Scholar
  16. Finus M, Pintassilgo P (2010) Formation of agreements on climate change: the impact of uncertainty. In: Panagopoulos T (ed) Advances in climate changes, global warming, biological problems and natural hazards. WSEAS Press, Miami, pp 124–129Google Scholar
  17. Gaspars-Wieloch H (2013) Modifications of the Hurwicz’s decision rule. Central Eur J Oper Res 22:1–16Google Scholar
  18. Gumbel EJ (1941) The return period of flood flows. Ann Math Stat 12(2):163–190CrossRefGoogle Scholar
  19. Haasnoot M, Kwakkel JH, Walker WE, ter Maat J (2013) Dynamic adaptive policy pathways: a method for crafting robust decisions for a deeply uncertain world. Global Environ Chang 23(2):485–498CrossRefGoogle Scholar
  20. Hall J (2007) Probabilistic climate scenarios may misrepresent uncertainty and lead to bad adaptation decisions. Hydrol Process 21(8):1127–1129CrossRefGoogle Scholar
  21. Hall J, Solomatine D (2008) A framework for uncertainty analysis in flood risk management decisions. Intl J River Basin Manag 6(2):85–98CrossRefGoogle Scholar
  22. Hayashi T (2009) Stopping with anticipated regret. J Math Econ 45:479–490CrossRefGoogle Scholar
  23. Hayashi T (2011) Context dependence and consistency in dynamic choice under uncertainty: the case of anticipated regret. Theory Decis 70(4):399–430CrossRefGoogle Scholar
  24. Hine D, Hall JW (2010) Information gap analysis of flood model uncertainties and regional frequency analysis. Water Resour Res 46(1):W01514CrossRefGoogle Scholar
  25. Hoekstra AY, De Kok J-L (2008) Adapting to climate change: a comparison of two strategies for dike heightening. Nat Hazards 47(2):217–228CrossRefGoogle Scholar
  26. Hurkmans R, Terink W, Uijlenhoet R, Torfs P, Jacob D, Troch PA (2010) Changes in streamflow dynamics in the Rhine Basin under three high-resolution regional climate scenarios. J Clim 23(3):679–699CrossRefGoogle Scholar
  27. Kasperski A (2008) Discrete optimization with interval data. Springer, WroclawGoogle Scholar
  28. Katsman CA, Sterl A, Beersma JJ, Brink HW, Church JA, Hazeleger W, Kopp RE, Kroon D et al (2011) Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta—the Netherlands as an example. Clim Change 109(3–4):617–645CrossRefGoogle Scholar
  29. Khaliq MN, Ouarda TBMJ, Ondo JC, Gachon P, Bobée B (2006) Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: a review. J Hydrol 329(3–4):534–552CrossRefGoogle Scholar
  30. Kharin VV, Zwiers FW (2005) Estimating extremes in transient climate change simulations. J Clim 18(8):1156–1173CrossRefGoogle Scholar
  31. KNMI (2014) KNMI’14 compared with KNMI’06: changes for 2014 (in Dutch). KNMI, de Bilt,
  32. Krähmer D, Stone R (2005) Dynamic regret theory. Working paper, University College London, LondonGoogle Scholar
  33. Kwadijk JCJ, Haasnoot M, Mulder JPM, Hoogvliet MMC, Jeuken ABM, van der Krogt RAA, van Oostrom NGC, Schelfhout HA et al (2010) Using adaptation tipping points to prepare for climate change and sea level rise: a case study in the Netherlands. WIREs Clim Change 1(5):729–740CrossRefGoogle Scholar
  34. Lempert RJ, Groves DG, Popper SW, Bankes SC (2006) A General, analytic method for generating robust strategies and narrative scenarios. Manag Sci 52(4):514–528CrossRefGoogle Scholar
  35. Lonsdale KG, Downing TE, Nicholls RJ, Parker D, Vafeidis AT, Dawson R, Hall J (2008) Plausible responses to the threat of rapid sea-level rise in the Thames Estuary. Clim Change 91(1–2):145–169CrossRefGoogle Scholar
  36. Loomes G, Sugden R (1982) Regret theory: an alternative theory of rational choice under uncertainty. Econ J 92(368):805–824CrossRefGoogle Scholar
  37. Manski CF (2009) The 2009 Lawrence R. Klein Lecture: diversified treatment under ambiguity. Int Econ Rev 50(4):1013–1041CrossRefGoogle Scholar
  38. Mens MJP, Klijn F, de Bruijn KM, van Beek E (2011) The meaning of system robustness for flood risk management. Environ Sci Pol 14(8):1121–1131CrossRefGoogle Scholar
  39. Niehans J (1948) Zur Preisbildungen bei ungewissen Erwartungen. Swiss J Econ Stat 84:433–456Google Scholar
  40. Pahl-Wostl C (2007) Transitions towards adaptive management of water facing climate and global change. Water Resour Manag 21(1):49–62CrossRefGoogle Scholar
  41. Quiggin J (2016) The value of information and the value of awareness. Theory Decis 80:167–185CrossRefGoogle Scholar
  42. Roseta-Palma C, Xepapadeas AP (2004) Robust control in water management. J Risk Uncertain 29(1):21–34CrossRefGoogle Scholar
  43. Savage LJ (1951) The theory of statistical decision. J Am Stat Assoc 46(253):55–67CrossRefGoogle Scholar
  44. Schwartz ES, Trigeorgis L (2004) Real options and investment under uncertainty: classical readings and recent contributions. MIT Press, LondonGoogle Scholar
  45. Stoye J (2012) New perspectives on statistical decision under ambiguity. Annu Rev Econ 4:257–282CrossRefGoogle Scholar
  46. Turner RK (2007) Limits to CBA in UK and European environmental policy: retrospects and future prospects. Environ Resour Econ 37(1):253–269CrossRefGoogle Scholar
  47. van Dantzig D (1956) Economic decision-problems for flood prevention. Econometrica 24(3):276–287CrossRefGoogle Scholar
  48. van der Pol TD, van Ierland EC, Weikard HP (2014) Optimal dike investments under uncertainty and learning about increasing water levels. J Flood Risk Manag 7(4):308–318CrossRefGoogle Scholar
  49. Vis M, Klijn F, De Bruijn KM, Van Buuren M (2003) Resilience strategies for flood risk management in the Netherlands. Intl J River Basin Manag 1(1):33–40CrossRefGoogle Scholar
  50. Wahl T, Haigh ID, Woodworth PL, Albrecht F, Dillingh D, Jensen J, Nicholls RJ, Weisse R et al (2013) Observed mean sea level changes around the North Sea coastline from 1800 to present. Earth Sci Rev 124:51–67CrossRefGoogle Scholar
  51. Watkiss P, Hunt A, Blyth W, Dyszynski J (2015) The use of new economic decision support tools for adaptation assessment: a review of methods and applications, towards guidance on applicability. Clim Change 132(3):401–416Google Scholar
  52. Weitzman ML (2009) On modeling and interpreting the economics of catastrophic climate change. Rev Econ Stat 91(1):1–19CrossRefGoogle Scholar
  53. Westphal J, Thompson DB, Stevens GT Jr, Strauser C (1999) Stage–discharge relations on the Middle Mississippi River. J Water Res Plan Manag ASCE 125(1):48–53CrossRefGoogle Scholar
  54. Woodward RT, Bishop RC (1997) How to decide when experts disagree: uncertainty-based choice rules in environmental policy. Land Econ 73(4):492–507CrossRefGoogle Scholar
  55. Woodward M, Gouldby B, Kapelan Z, Khu S-T, Townend I (2011) Real Options in flood risk management decision making. J Flood Risk Manag 4(4):339–349CrossRefGoogle Scholar
  56. Yager RR (2004) Decision making using minimization of regret. Int J Approx Reason 36(2):109–128CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • T. D. van der Pol
    • 1
  • S. Gabbert
    • 2
  • H.-P. Weikard
    • 2
  • E. C. van Ierland
    • 2
  • E. M. T. Hendrix
    • 3
  1. 1.Climate and Regional EconomicsNetherlands Bureau for Economic Policy AnalysisThe HagueThe Netherlands
  2. 2.Environmental Economics and Natural Resources GroupWageningen UniversityWageningenThe Netherlands
  3. 3.Computer Architecture, Universidad de MálagaE.T.S.I. Informática, Campus de TeatinosMálagaSpain

Personalised recommendations