Environmental and Resource Economics

, Volume 68, Issue 4, pp 915–947 | Cite as

Greenhouse Gas Abatement Cost Curves of the Residential Heating Market: A Microeconomic Approach

  • Caroline Löffler
  • Harald Hecking


In this paper, we develop a microeconomic approach to deduce greenhouse gas abatement cost curves of the residential heating sector. Our research is based on a system dynamics microsimulation of private households’ investment decisions for heating systems to the year 2030. By accounting for household-specific characteristics, we investigate the welfare costs of different abatement policies in terms of the compensating variation and the excess burden. We investigate two policies: (i) a carbon tax and (ii) subsidies on heating system investments. We deduce abatement cost curves for both policies by simulating welfare costs and greenhouse gas emissions to the year 2030. We find that (i) welfare-based abatement costs are generally higher than pure technical equipment costs; (ii) given utility maximizing households a carbon tax is the most welfare-efficient policy and; (iii) if households are not utility maximizing, a subsidy on investments may have lower marginal greenhouse gas abatement costs than a carbon tax.


Greenhouse gas abatement costs Heat market Household behavior Pigou tax 



Greenhouse gas

\(\text {CO}_2\)-eq

\(\text {CO}_2\)-equivalent


DIscrete choice HEat market model

JEL Classification

C35 C61 Q47 Q53 R21 



We would like to thank Felix Höffler, Christian Growitsch, Sebastian Kranz, Heike Wetzel and Andreas Peichl for their helpful comments and suggestions.


  1. Allcott H, Greenstone M (2012) Is there an energy efficiency gap? J Econ Perspect 26(1):3–28CrossRefGoogle Scholar
  2. ARGE Kiel (2010) Wohnungsbau in Deutschland 2011—Modernisierung oder Bestandsersatz. Arbeitsgemeinschaft für zeitgemäßes Bauen, KielGoogle Scholar
  3. Auerbach A (1985) The theory of excess burden and optimal taxation. In: Auerbach AJ, Feldstein M (eds) Handbook of public economics, vol 1. North-Holland, New York, pp 61–127Google Scholar
  4. Ballard C, Medema S (1993) The marginal efficiency effects of taxes and subsidies in the presence of externalities—a computational general equilibrium approach. J Public Econ 52:199–216CrossRefGoogle Scholar
  5. Baumol WJ (1972) On taxation and the control of externalities. Am Econ Rev 62(3):307–322Google Scholar
  6. BDH (2010) Trends und Herausforderungen im Wärmemarkt—Marktentwicklung Wärmeerzeuger 1999–2009. (09/23/2014)
  7. Berry S (1994) Estimating discrete-choice models of product differentiation. RAND J Econ 25(2):242–262CrossRefGoogle Scholar
  8. Berry S, Levinsohn J, Pakes A (1995) Automobile prices in market equilibrium. Econometrica 63(4):841–890CrossRefGoogle Scholar
  9. Bovenberg AL, de Mooij RA (1994) Environmental levies and distortionary taxation. Am Econ Rev 84(4):1085–1089Google Scholar
  10. Bovenberg AL, Goulder L (1996) Optimal environmental taxation in the presence of other taxes: general-equilibrium analyses. Am Econ Rev 86:985–1000Google Scholar
  11. Braun FG (2010) Determinants of households’ space heating type: a discrete choice analysis for German households. Energy Policy 38(10):5493–5503CrossRefGoogle Scholar
  12. Buildings Performance Institute Europe (BPIE) (2011). Europe’s buildings under the microscope—a country-by-country review of the energy performance of buildings. 23 Sept 2014
  13. Cremer H, Gahvari F, Ladoux N (2003) Environmental taxes with heterogeneous consumers: an application to energy consumption in France. J Public Econ 87:2791–2815CrossRefGoogle Scholar
  14. Destatis (2008) Bauen und Wohnen—Mikrozensus—Zusatzerhebung 2006. Fachserie 5 Heft 1, Statistisches BundesamtGoogle Scholar
  15. Destatis (2010a) Bauen und Wohnen—Baugenehmigungen/Baufertigstellungen von Wohn- und Nichtwohngebäuden (Neubau) nach Art der Beheizung und Art der verwendeten Heizenergie. Lange Reihen ab 1980, Statistisches BundesamtGoogle Scholar
  16. Destatis (2010b) Bauen und Wohnen—Bestand an Wohnungen. Fachserie 5 Reihe 3, Statistisches BundesamtGoogle Scholar
  17. Destatis (2010c) Gebäude und Wohnungen—-Bestand an Wohnungen und Wohngebäuden, Abgang von Wohnungen und Wohngebäuden. Lange Reihen ab 1969–2009, Statistisches BundesamtGoogle Scholar
  18. Diamond P, McFadden D (1974) Some uses of the expenditure funtion in public finance. J Public Econ 3:3–22CrossRefGoogle Scholar
  19. Dieckhöner C (2012) Does subsidizing investments in energy efficiency reduce energy consumption? Evidence from Germany. EWI Working Paper 12/17Google Scholar
  20. European Commission (2007) Accompanying document to the Communication from the Commission to the Council and the European Parliament—Renewable Energy Road Map—Renewable energies in the 21st century: building a more sustainable future—Impact Assessment. Commission Staff Working Document SEC 2006:1719Google Scholar
  21. Eurostat (2011) Eurostat statistics database: renewable energy primary production: biomass, hydro, geothermal, wind and solar energy., 23 Sept 2014
  22. Fullerton D, Metcalf G (1998) Environmental taxes and the double-dividend hypothesis: did you really expect something for nothing? Chicago-Kent Law Rev 73:221–256Google Scholar
  23. Geroski P (2000) Models of technology diffusion. Res Policy 29:603–625CrossRefGoogle Scholar
  24. Goulder LH (1995) Environmental taxation and the double dividend: a reader’s guide. Int Tax Public Finance 2(2):157–183CrossRefGoogle Scholar
  25. Hausman J, McFadden D (1984) Specification tests for the multinomial logit model. Econometrica 52(5):1219–1240CrossRefGoogle Scholar
  26. Huntington H (2011) The policy implications of energy-efficiency cost curves. Energy J 32(Special Issue 1):7–22Google Scholar
  27. Leipzig IE (2009) Vollkostenvergleich Heizsysteme 2009. Informationen für Verbraucher, Leipziger Institut fr Energie GmbH, LeipzigGoogle Scholar
  28. IEA (2011) Energy balances of OECD countries 2011. International Energy Agency, ParisGoogle Scholar
  29. IPCC (2007) Climate change 2007: the physical science basis. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change, IPCCGoogle Scholar
  30. IW Köln (2010) Wohngebäudesanierer Befragung 2010. Technical Report, KFW/Institut der deutschen Wirtschaft KölnGoogle Scholar
  31. IW Köln (2012) Energetische Modernisierung des Gebäudebestandes: Herausforderungen fr private Eigentümer. Technical Report, Institut der deutschen Wirtschaft KölnGoogle Scholar
  32. IWU (2013) Energetische Sanierung des Gebudebestandes privater Haushalte. Technical Report, Institut Wohnen und UmweltGoogle Scholar
  33. IWU BEI (2010) Datenbasis Gebäudebestand. Datenerhebung zur energetischen Qualität und zu den Modernisierungstrends im deutschen Wohngebäudebestand, Institut Wohnen und Umwelt (IWU) / Bremer Energie Institut (BEI)Google Scholar
  34. Kavgic M, Mavrogianni A, Mumovic D, Summerfield A, Stevanovic Z, Djurovic-Petrovic M (2010) A review of bottom-up building stock models for energy consumption in the residential sector. Build Environ 45(7):1683–1697CrossRefGoogle Scholar
  35. Llavador H, Roemer JE, Silvestre J (2011) A dynamic analysis of human welfare in a warming planet. J Public Econ 95:1607–1620CrossRefGoogle Scholar
  36. Madlener R (1996) Econometric analysis of residential energy demand: a survey. J Energy Lit 2:3–32Google Scholar
  37. Mansur ET, Mendelsohn R, Morrison W (2008) Climate change adaptation: a study of fuel choice and consumption in the US energy sector. J Environ Econ Manag 55(2):175–193CrossRefGoogle Scholar
  38. Mayshar J (1990) On measures of excess burden and their application. J Public Econ 43(3):263–289CrossRefGoogle Scholar
  39. McFadden D (1976) Quantal choice analysis: a survey. Ann Econ Soc Meas 5:349–368Google Scholar
  40. McFadden D (1999) Computing willingness-to-pay for transport improvements. In: Moore J, Riezman R, Melvin J (eds) Trade, theory and econometrics: essays in honour of John S. Chipman. Routledge, LondonGoogle Scholar
  41. McFadden D, Train K (2000) Mixed MNL models with discrete response. J Appl Econ 15(5):447–470CrossRefGoogle Scholar
  42. McFadden DL (1974) Conditional logit analysis of qualitative choice behavior. Academic Press, New York, pp 105–142Google Scholar
  43. McKinsey & Company, Inc. (2009) Unlocking energy efficiency in the U.S. economy. McKinsey Global Energy and Materials, McKinsey & Company, IncGoogle Scholar
  44. Michelsen CC, Madlener R (2012) Homeowners’ preferences for adopting innovative residential heating systems: a discrete choice analysis for Germany. Energy Econ 34(5):1271–1283CrossRefGoogle Scholar
  45. Morris J, Paltsev S, Reilly J (2008) Marginal abatement costs and marginal welfare costs for greenhouse gas emissions reductions: results from the EPPA model. Report No. 164, MIT Joint Program on the Science and Policy of Global ChangeGoogle Scholar
  46. Nordhaus WD (2011) Estimates of the social cost of carbon: background and results of the RICE-2011 model. Cowles Foundation Discussion PaperGoogle Scholar
  47. Öko-Institut eV (2011) Global emission model for integrated systems (GEMIS). 29 August 2011
  48. Pearce D (2003) The social cost of carbon and its policy implications. Oxford Rev Econ Policy 19(3):362–384CrossRefGoogle Scholar
  49. Rehdanz K (2007) Determinants of residential space heating expenditures in Germany. Energy Econ 29(2):167–182CrossRefGoogle Scholar
  50. Small KA, Rosen HS (1981) Applied welfare economics with discrete choice models. Econometrica 49(1):105–130CrossRefGoogle Scholar
  51. Stadler M, Kranzl L, Huber C, Haas R, Tsioliaridou E (2007) Policy strategies and paths to promote sustainable energy systems—the dynamic Invert simulation tool. Energy policy 35(1):597–608CrossRefGoogle Scholar
  52. Stern N (2007) The economics of climate change. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  53. Swan LG, Ugursal VI (2009) Modeling of end-use energy consumption in the residential sector: a review of modeling techniques. Renew Sustain Energy Rev 13(8):1819–1835CrossRefGoogle Scholar
  54. Torres C, Hanley N, Riera A (2011) How wrong can you be? Implications of incorrect utility function specification for welfare measurement in choice experiments. J Environ Econ Manag 62:111–121CrossRefGoogle Scholar
  55. Tra C (2010) A discrete choice equilibrium approach to valuing large environmental changes. J Public Econ 94:183–196CrossRefGoogle Scholar
  56. Train K (2003) Discrete choice methods with simulation. Cambridge University Press, CambridgeCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute of Energy EconomicsUniversity of Cologne (EWI)CologneGermany

Personalised recommendations