Environmental and Resource Economics

, Volume 66, Issue 4, pp 717–747 | Cite as

Opportunity Cost Estimation of Ecosystem Services

  • Arjan RuijsEmail author
  • M. Kortelainen
  • A. Wossink
  • C. J. E. Schulp
  • R. Alkemade


Land-use changes rank among the most significant drivers of change in ecosystem services worldwide. The enhancement of important services such as biodiversity and carbon sequestration requires modifications in land-use that can lead to the decline in other ecosystems services. Targeting the most suitable areas for particular land-uses based on comparative advantages requires opportunity cost information across large regions. This is a demanding task because the input–output relations are ill-defined and determined by spatially heterogeneous operational and environmental conditions. To address this methodological challenge, this paper presents a two-stage semiparametric technique that enables multi-dimensional production possibility frontiers to be estimated from data provided by biophysical models. Specific advantages of the proposed frontier approach are its flexibility with regard to assumptions on the convexity of the production possibility set and its freedom from any separability assumptions for the input–output space and the space of the heterogeneous background variables. The method is illustrated for a case study of 18 Central and Eastern European countries. Results show that opportunity costs of changes in ecosystem services provision differ substantially between regions. Those areas having already relatively high levels of carbon sequestration have a comparative advantage in sequestering carbon. Opportunity costs of biodiversity are generally positively related with the level of biodiversity up to a turning point after which they are negatively related. To illustrate the policy consequences of the observed economies and diseconomies of scope we compare two management regimes to illustrate the potential gains from smart land management.


Opportunity costs Ecosystem services Biodiversity Non-separability Nonparametric estimation Trade-offs Comparative advantage Returns to scope 


  1. Agee MD, Atkinson SE, Crocker TD (2011) Child maturation, time-invariant, and time-varying inputs: their interaction in the production of child human capital. J Prod Anal 38:29–44CrossRefGoogle Scholar
  2. Agee MD, Atkinson SE, Crocker TD, Williams JW (2014) Non-separable pollution control: implications for a CO2 emissions cap and trade system. Resour Energy Econ 36:64–82CrossRefGoogle Scholar
  3. Alix-Garcia JM, Shapiro EN, Sims KRE (2012) Forest conservation and slippage: evidence from Mexico’s national payments for ecosystem services program. Land Econ 88(4):613–638CrossRefGoogle Scholar
  4. Alkemade R, van Oorschot M, Miles L, Nellemann C, Bakkenes M, ten Brink B (2009) GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems 12:374–390CrossRefGoogle Scholar
  5. Antle J, Capalbo S, Mooney S, Elliott E, Paustian K (2003) Spatial heterogeneity, contract design, and the efficiency of carbon sequestration policies for agriculture. J Environ Econ Manag 46(2):231–250CrossRefGoogle Scholar
  6. Arriagada RA, Ferraro PJ, Sills EO, Pattanayak SK, Cordero-Sancho S (2012) Do payments for environmental services affect forest cover? A farm-level evaluation from Costa Rica. Land Econ 88(2):382–399CrossRefGoogle Scholar
  7. Bădin L, Daraio C, Simar L (2012) How to measure the impact of environmental factors in a nonparametric production model. Eur J Oper Res 223(3):818–833CrossRefGoogle Scholar
  8. Balmford A, Fisher B, Green RE, Naidoo R, Strassburg B, Turner RK, Rodrigues ASL (2011) Bringing ecosystem services into the real world: an operational framework for assessing the economic consequences of losing wild nature. Environ Resour Econ 48(2):161–175CrossRefGoogle Scholar
  9. Bateman IJ (2009) Bringing the real world into economic analyses of land use value: incorporating spatial complexity. Land Use Policy 26. Supplement 1(0):S30–S42Google Scholar
  10. Bateman IJ, Mace GM, Fezzi C, Atkinson G, Turner K (2011) Economic analysis for ecosystem service assessments. Environ Resour Econ 48(2):177–218CrossRefGoogle Scholar
  11. Bateman IJ, Harwood AR, Mace GM, Watson RT, Abson DJ, Andrews B, Binner A, Crowe A, Day BH, Dugdale S, Fezzi C, Foden J, Hadley D, Haines-Young R, Hulme M, Kontoleon A, Lovett AA, Munday P, Pascual U, Paterson J, Perino G, Sen A, Siriwardena G, van Soest D, Termansen M (2013) Bringing ecosystem services into economic decision-making: land use in the United Kingdom. Science 341(6141):45–50CrossRefGoogle Scholar
  12. Bateman I, Harwood A, Abson D, Andrews B, Crowe A, Dugdale S, Fezzi C, Foden J, Hadley D, Haines-Young R, Hulme M, Kontoleon A, Munday P, Pascual U, Paterson J, Perino G, Sen A, Siriwardena G, Termansen M (2014) Economic analysis for the UK national ecosystem assessment: synthesis and scenario valuation of changes in ecosystem services. Environ Resour Econ 57:273–297CrossRefGoogle Scholar
  13. Batie S, Mabbs-Zeno CC (1985) Opportunity costs of preserving coastal wetlands: a case study of a recreational housing development. Land Econ 61(1):1–9CrossRefGoogle Scholar
  14. Boscolo M, Vincent JR (2003) Nonconvexities in the production of timber, biodiversity, and carbon sequestration. J Environ Econ Manag 46(2):251–268CrossRefGoogle Scholar
  15. Bostian MB, Herlihy AT (2014) Valuing tradeoffs between agricultural production and wetland condition in the U.S. Mid-Atlantic region. Ecol Econ 105:284–291CrossRefGoogle Scholar
  16. Bouwman AF, Kram T, Klein Goldewijk, K Eds. (2006) Integrated modelling of global environmental change. An overview of IMAGE 2.4. Bilthoven, The Netherands, PBL - Netherlands Environmental Assessment AgencyGoogle Scholar
  17. Bowes MD, Krutilla JV (1989) Multiple-use management: the economics of public forestlands. Resources for the Future, WashingtonGoogle Scholar
  18. Brown G, Patterson T, Cain N (2011) The devil in the details: non-convexities in ecosystem service provision. Resour Energy Econ 33(2):355–365CrossRefGoogle Scholar
  19. Cazals C, Florens JP, Simar L (2002) Nonparametric frontier estimation: a robust aproach. J Econ 106:1–25CrossRefGoogle Scholar
  20. Chavas JP (2009) On the productive value of biodiversity. Environ Resour Econ 42(1):109–131CrossRefGoogle Scholar
  21. Cordero JM, Alonso-Morán E, Nuño-Solinis R, Orueta JF, Arce RS (2015) Efficiency assessment of primary care providers: a conditional nonparametric approach. Eur J Oper Res 240(1):235–244CrossRefGoogle Scholar
  22. Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I, Farber S, Turner RK (2014) Changes in the global value of ecosystem services. Glob Environ Change 26:152–158CrossRefGoogle Scholar
  23. Costinot A, Donaldson D (2012) Ricardo’s theory of comparative advantage: Old Idea. New evidence. Am Econ Rev 102(3):453–458CrossRefGoogle Scholar
  24. Daraio C, Simar L (2005) Introducing environmental variables in nonparametric frontier models: a probabilistic approach. J Prod Anal 24:93–121CrossRefGoogle Scholar
  25. Daraio C, Simar L (2007) Advanced robust and nonparametric methods in efficiency analysis: Methodology and applications. Springer, New YorkGoogle Scholar
  26. Dasgupta P, Maler KG (2003) The economics of non-convex ecosystems: Introduction. Environ Resour Econ 26(4):499–525CrossRefGoogle Scholar
  27. De Witte K, Kortelainen M (2009) Blaming the exogenous environment?. Conditional effciency estimation with continuous and discrete exogenous variables. MPRA Paper, MunichGoogle Scholar
  28. De Witte K, Geys B (2011) Evaluating efficient public good provision: theory and evidence from a generalised conditional efficiency model for public libraries. J Urban Econ 69:319–327CrossRefGoogle Scholar
  29. De Witte K, Kortelainen M (2013) What explains the performance of students in a heterogeneous environment? Conditional efficiency estimation with continuous and discrete environmental variables. Appl Econ 45(17):2401–2412CrossRefGoogle Scholar
  30. EC-JRC,(2003) Global Land Cover 2000 Database. European Commission, Joint Research CentreGoogle Scholar
  31. Färe R, Grosskopf S (2000) Theory and application of directional distance functions. J Prod Anal 13(2):93–103CrossRefGoogle Scholar
  32. Färe R, Grosskopf S, Noh DW, Weber W (2005) Characteristics of a polluting technology: theory and practice. J Econom 126(2):469–492CrossRefGoogle Scholar
  33. Färe R, Grosskopf S, Pasurka CA, Weber W (2012) Substitutability among undesirable outputs. Appl Econ 44(1):39–47CrossRefGoogle Scholar
  34. Fenger HJM (2007) Welfare regimes in Central and Eastern Europe: Incorporating post-communist countries in a welfare regime typology. Contemporary Issues and Ideas in Social Sciences 3(2)Google Scholar
  35. Ferraro PJ, Hanauer MM (2011) Protecting ecosystems and alleviating poverty with parks and reserves: ‘win-win’ or tradeoffs? Environ Resour Econ 48(2):269–286CrossRefGoogle Scholar
  36. Fezzi C, Bateman IJ (2011) Structural agricultural land use modelling for spatial agro-environmental policy analysis. Am J Agric Econ 93(4):1168–1188CrossRefGoogle Scholar
  37. Florens JP, Simar L (2005) Parametric approximations of nonparametric frontiers. J Econ 124(1):91–116CrossRefGoogle Scholar
  38. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478(7369):337–342CrossRefGoogle Scholar
  39. Frondel M (2011) Modelling energy and non-energy substitution: a brief survey of elasticities. Energy Policy 39(8):4601–4604CrossRefGoogle Scholar
  40. Halkos GE, Tzeremes NG (2013) Economic growth and environmental efficiency: evidence from US regions. Econ Lett 120(1):48–52CrossRefGoogle Scholar
  41. Hart R, Brady M, Olsen O (2014) Joint production of food and wildlife: uniform measures or nature oases? Environ Resour Econ 59:187–205CrossRefGoogle Scholar
  42. Ho DE, Imai K, King G, Stuart EA (2007) Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit Anal 15(3):199–236CrossRefGoogle Scholar
  43. Holland RA, Eigenbrod F, Armsworth PR, Anderson BJ, Thomas CD, Heinemeyer A, Gillings S, Roy DB, Gaston KJ (2011) Spatial covariation between freshwater and terrestrial ecosystem services. Ecol Appl 21(6):2034–2048CrossRefGoogle Scholar
  44. Honey-Roses J, Baylis K, Ramírez MI (2011) A spatially explicit estimate of avoided forest loss. Conserv Biol 25(5):1032–1043CrossRefGoogle Scholar
  45. Hughes G, Hare P (1994) The international competitiveness of industries in Bulgaria, Czechoslovakia, Hungary and Poland. Oxford Econ Papers 46:200–221CrossRefGoogle Scholar
  46. Hussain SS, Brander L, McVittie A, Vardakoulias O, Wagtendonk A, Verburg P, Tinch R, Fofana A, Baulcomb C, Mathieu L (2011) The economics of ecosystems and biodiversity quantitative assessment—final report. UNEP, GenevaGoogle Scholar
  47. Irwin EG, Isserman AM, Kilkenny M, Partridge MD (2010) A century of research on rural development and regional issues. Am J Agric Econ 92(2):522–553CrossRefGoogle Scholar
  48. Jellinek S, Rumpff L, Driscoll DA, Parris KM, Wintle BA (2014) Modelling the benefits of habitat restoration in socio-ecological systems. Biol Conserv 169:60–67CrossRefGoogle Scholar
  49. Johnson JA, Runge CF, Senauer B, Foley J, Polasky S (2014) Global agriculture and carbon trade-offs. Proc Natl Acad Sci 111(34):12342–12347CrossRefGoogle Scholar
  50. Joppa L, Pfaff A (2012) Reassessing the forest impacts of protection: the challenge of nonrandom location and a corrective measure. Ann N Y Acad Sci 1185:135–149CrossRefGoogle Scholar
  51. Keeler BL, Polasky S, Brauman KA, Johnson KA, Finlay JC, O’Neill A, Kovacs K, Dalzell B (2012) Linking water quality and well-being for improved assessment and valuation of ecosystem services. Proc Natl Acad Sci USA 109(45):18619–18624CrossRefGoogle Scholar
  52. Lawler JL, Lewis DJ, Nelson E, Plantinga AJ, Polasky S, Withey JC, Helmers DP, Martinuzzi S, Pennington D, Radeloff VC (2014) Projected landuse change impacts on ecosystem services in the United States. Proc Natl Acad Sci USA 111(20):7492–7497CrossRefGoogle Scholar
  53. MacLeod M, Moran D, Eory V, Rees RM, Barnes A, Topp CFE, Ball B, Hoad S, Wall E, McVittie A, Pajot G, Matthews R, Smith P, Moxey A (2010) Developing greenhouse gas marginal abatement cost curves for agricultural emissions from crops and soils in the UK. Agric Syst 103(4):198–209CrossRefGoogle Scholar
  54. Maes J, Paracchini ML, Zulian G, Dunbar MB, Alkemade R (2012) Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in Europe. Biol Conserv 155:1–12CrossRefGoogle Scholar
  55. Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, Cameron DR, Chan KMA, Daily GC, Goldstein J, Kareiva PM, Lonsdorf E, Naidoo R, Ricketts TH, Shaw MR (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ 7(1):4–11CrossRefGoogle Scholar
  56. O’Donnell CJ, Coelli TJ (2005) A Bayesian approach to imposing curvature on distance functions. J Econ 126(2):493–523CrossRefGoogle Scholar
  57. OECD (2012) OECD Environmental Outlook to 2050. OECD, ParisGoogle Scholar
  58. Panzar JC, Willig RD (1981) Economies of scope. Am Econ Rev 71(2):268–272Google Scholar
  59. Parson GR, Wu Y (1991) The opportunity costs of coastal land-use controls: an empirical analysis. Land Econ 67(3):308–316CrossRefGoogle Scholar
  60. Paul CJM, Nehring R (2005) Product diversification, production systems, and economic performance in US agricultural production. J Econ 126(2):525–548CrossRefGoogle Scholar
  61. Polasky S, Nelson E, Camm J, Csuti B, Fackler P, Lonsdorf E, Montgomery C, White D, Arthur J, Garber-Yonts B, Haight R, Kagan J, Starfield A, Tobalske C (2008) Where to put things? Spatial land management to sustain biodiversity and economic returns. Biol Conserv 141(6):1505–1524CrossRefGoogle Scholar
  62. Polasky S, Nelson E, Pennington D, Johnson KA (2011) The Impact of Land-Use Change on Ecosystem Services. Biodiversity and Returns to Landowners: A Case Study in the State of Minnesota, Environmental and Resource Economics 48:219–242Google Scholar
  63. Pope B, Johnson A (2013) Returns to Scope: a metric for production synergies demonstrated for hospital production. J Prod Anal 40:239–250CrossRefGoogle Scholar
  64. Preyra C, Pink G (2006) Scale and scope efficiencies through hospital consolidations. J Health Econ 25(6):1049–1068CrossRefGoogle Scholar
  65. Raudsepp-Hearne C, Peterson GD, Bennett EM (2010) Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc Nat Acad Sci USA 107(11):5242–5247CrossRefGoogle Scholar
  66. Renwick A, Jansson T, Verburg PH, Revoredo-Giha C, Britz W, Gocht A, McCracken D (2013) Policy reform and agricultural land abandonment in the EU. Land Use Policy 30(1):446–457CrossRefGoogle Scholar
  67. Ruijs A, Wossink A, Kortelainen M, Alkemade R, Schulp CJE (2013) Trade-off analysis of ecosystem services in Eastern Europe. Ecosyst Serv 4:82–94CrossRefGoogle Scholar
  68. Sauer J (2006) Economic theory and econometric practice: parametric efficiency analysis. Empir Econ 31:1061–1087CrossRefGoogle Scholar
  69. Schulp CJE, Nabuurs GJ, Verburg PH (2008) Future carbon sequestration in Europe—effects of land use change. Agric Ecosyst Environ 127:251–264CrossRefGoogle Scholar
  70. Schulp CJE, Alkemade R, Klein Goldewijk K, Petz K (2012) Mapping ecosystem functions and services in Eastern Europe using global-scale data sets. Int J Biodivers Sci Ecosyst Serv Manag 8:156–168CrossRefGoogle Scholar
  71. Secretariat of the Convention on Biological Diversity (2014). Global Biodiversity Outlook 4.Montreal, Canada, Convention on Biological Diversity, United Nations Environment ProgramGoogle Scholar
  72. Stehfest E, van Vuuren D, Kram T, Bouwman L, Alkemade R, Bakkenes M, Biemans H, Bouwman, A den Elzen M, Janse J, Lucas P, van Minnen J, Müller M, Prins A (2014) Integrated assessment of global environmental change with IMAGE 3.0: Model description and policy applications. The Hague, PBL - Netherlands Environmental Assessment AgencyGoogle Scholar
  73. Stern D (2011) Elasticities of substitution and complementarity. J Prod Anal 36(1):79–89CrossRefGoogle Scholar
  74. Tschirhart J (2012) Biology as a source of non-convexities in ecological production functions. Environ Resour Econ 51(2):189–213CrossRefGoogle Scholar
  75. Turner RK, Paavola J, Cooper P, Farber S, Jessamy V, Georgiou S (2003) Valuing nature: lessons learned and future research directions. Ecol Econ 46(3):493–510CrossRefGoogle Scholar
  76. UNEP (2012) GEO5: Environment for the future we want. Nairobi, Kenya, United Nations Environment ProgramGoogle Scholar
  77. Van Meijl H, Van Rheenen T, Tabeau A, Eickhout B (2006) The impact of different policy environments on agricultural land use in Europe. Agric Ecosyst Environ 114(1):21–38CrossRefGoogle Scholar
  78. Verschelde M, Rogge N (2012) An environment-adjusted evaluation of citizen satisfaction with local police effectiveness: Evidence from a conditional Data Envelopment Analysis approach. Eur J Oper Res 223(1):214–225CrossRefGoogle Scholar
  79. Vidoli F (2011) Evaluating the water sector in Italy through a two stage method using the conditional robust nonparametric frontier and multivariate adaptive regression splines. Eur J Oper Res 212(3):583–595CrossRefGoogle Scholar
  80. Vincent JR (2012) Ecosystem Services and Green Growth. Policy Research Working Papers No. 6233. The World Bank, Washington DCGoogle Scholar
  81. Woltjer G, Kuiper M (2014) The Magnet model, Module description, Wageningen: LEI/Wageningen UR, LEI Report 14-057. Available from
  82. World Bank (2013) World development indicators. The World Bank, Washington D.CGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Arjan Ruijs
    • 1
    Email author
  • M. Kortelainen
    • 2
  • A. Wossink
    • 3
  • C. J. E. Schulp
    • 4
  • R. Alkemade
    • 5
  1. 1.PBL-Netherlands Environmental Assessment AgencyBilthovenThe Netherlands
  2. 2.VATT Institute for Economic ResearchHelsinkiFinland
  3. 3.Economics, School of SocialSciencesUniversity of ManchesterManchesterUK
  4. 4.VU-IVM Institute for Environmental StudiesAmsterdamThe Netherlands
  5. 5.PBL-Netherlands Environmental Assessment AgencyBilthovenThe Netherlands

Personalised recommendations