Abstract
Scarcities of environmental services are no longer merely a remote hypothesis. Consequently, analysis of their inequalities between nations becomes of paramount importance for the achievement of sustainability. This paper aims, on the one hand, at revising methodological aspects of the inequality measurement of certain environmental data and, on the other, at extending the scarce empirical evidence relating to the international distribution of Ecological Footprint (EF). Most of the techniques currently important in the literature are revised and then tested on EF data with interesting results. We consider the underlying properties of different inequality indices. Those indices which fit best with environmental inequality measurements are CV\(^{2}\) and GE(2) because of their neutrality property. Subgroup and Source decompositions are also discussed from a methodological perspective. Empirically, this paper contributes to the environmental inequality measurement of EF: this inequality has been quite stable. Subgroup decomposition by using exogenous country groups (World Bank classification) conclude that between group inequality explains almost the totality of international EF-inequality. Source decomposition warns of the dangers of confining CO\(_2\) emissions reduction to crop-based energies because of the implications for basic needs satisfaction.
This is a preview of subscription content, access via your institution.






Notes
As stated in the Principles of UNFCCC (Article 3): “The Parties should protect the climate system for the benefit of present and future generations of humankind, on the basis of equity and in accordance with their common but differentiated responsibilities and respective capabilities. Accordingly, the developed country Parties should take the lead in combating climate change and the adverse effects thereof.”
Wu and Xu (2010) analysed the EF distribution for the Chinese region of Heihe River Basin.
The basic equation necessary to develop an intuitive understanding of how EF is calculated is: Yield \(=\) Tonnes per year/Area—this may be rearranged as Area \(=\) Tonnes per year/Yield (Wackernagel et al. 2004). In order to obtain a consumption based indicator of EF, it is necessary to add the EF of imports (\({EF}_{I}\)) and subtract the EF of exports (\({EF}_{E}\)). In this way, we obtain the EF of consumption (\({EF}_{C}\)): \(EF_C =EF_P +EF_I -EF_E\).
For the underlying assumptions see Ewing et al. (2010b).
EF measures land appropriation by consumed products; some of them appropriate land directly (paper, food, housing, etc), while the use of fossil energy included in all products (carbon footprint) is appropriated by a fictive and indirect use of land. The idea is to calculate how great an area would be needed to replace the use of fossils or to soak up their emissions. In fact, a sustainable economy would not drain natural capital, but continuously would produce the energy which is used (Røpke 2001).
Three basic properties (Goerlich 1998): scale-independence: the inequality measure remains unaltered by changes of the same proportion in all the observations. Population independence: the inequality index remains unchanged with replications of the population. Pigou–Dalton principle of transfers: any transfer from an observation (country) with a high level of a variable to an observation (country) at a lower level (which does not invert the relative rankings) should reduce the value of the inequality index.
The reason will be found in the concavity of the implicit Social Welfare Function.
The GE(2) and CV \(^{2}\) are cardinally equivalent; which means that not only will they rank distributional inequality identically (ordinal equivalence) but also the percentage change from ion inequality between the ranked distribution is the same. Indeed \(GE(2)=1/2CV^{2}\).
The same analysis as shown in Fig. 3 has been performed, excluding China from the sample. These results show an uninterrupted increase in the EF inequality. This is consistent with Duro and Padilla (2006), where the reducing trend in CO\(_{2}\) emissions inequality was found to be less evident without China and India in the sample.
The analyses of EF inequality consist in measuring differences in per capita EF weighted by relative population. Following Duro (2013) we have decomposed the inequality changes in terms of changes in the per capita EF vector (with relative population weights held constant) and in terms of changes in the vector of relative population (holding per capita EF constant). Our results, available on request, showed that in the periods where there is a significant change of EF inequality, such evolution was always mainly driven by changes in the per capita EF vector rather than in changes in the world population structure. Therefore, international EF inequality has been a matter of differences in the ‘size’ of the people rather than changes in the number of people in countries.
World Bank groups are: East-Asia and Pacific, Europe and Central Asia, South Asia, Industrial countries, Latin America and the Caribbean, Middle East and North Africa, and Sub-Saharan Africa. See “Appendix 2”.
Wu and Xu (2010) performed a subgroup decomposition of the EF of the Heihe River Basin of Northwestern China. Their results point out that EF inequality in that region was mainly derived from the inter-regional inequality between urban and rural areas.
It is a common practice in the empirical literature to use each component’s inequality as a contribution to the overall inequality (see Shorrocks 1988). Actually, Steinberger et al. (2010) analysed international inequality in Domestic Material Consumption and the inequality of its components (biomass DMC, construction minerals DMC, ores/industrial minerals DMC and fossil fuels DMC). Dongjing et al. (2010) analysed international inequality of Ecological Footprint and also the inequality of two aggregated subcomponents: Renewable Resources Footprint and Energy Footprint.
Steinberger et al. (2010) estimated the Gini index of Domestic Material Consumption (DMC) and of its different components (biomass, construction minerals, fossil fuels, ores/industrial minerals) for the year 2000. Despite both indicators sharing raw data, the results obtained are not comparable, since the indicators deal with different research questions and so are constructed differently. EF focuses mainly on biomass consumption. Nevertheless, it is interesting to observe some relatively similar results: the Gini coefficient for total DMC is 0.35 and the Gini coefficient in the same year of EF is 0.39; the Gini coefficient for fossil fuels DMC is 0.58 while the Gini coefficient for Carbon Footprint for our data is 0.576. Additionally, if the Cropland, forest, grazing, and fishing footprints are added together in order to construct a “pure biomass footprint”, the resulting Gini coefficient for 2000 would be 0.300, very close to the 0.29 Gini for Biomass Material Consumption of the Steinberger et al. paper. Therefore, our analysis is in line with that of Steinberger et al. (2010), while adding new which are compatible. Our calculations are available on request.
The conditions are: a) the inequality index and the sources are continuous and symmetric. b) The contributions do not depend on the aggregation level. c) The contributions of the factors sum the global inequality. d) The contribution of source \(k\) is zero if factor \(k\) is evenly distributed. e) With two only factors, where one of them is a permutation of the other, the contributions must be equal.
The differences between the source contributions estimated by White (2007) (W) and those obtained here (T–D) in 2003 are rather small: Carbon: W (65.6 %), T–D (66.5 %); Forest: W (11.2 %), T–D (12.7 %); Built: W (3.2 %), T–D (0.7 %). Food (Grazing + Cropland + Fishing): W (20.1 %), T–D (19.9 %).
Araar (2006) discusses, among other issues, the decomposition of the Gini index and gives a clue as to why its decomposition can be close to the Shorrocks solution; this is the low-ranking effect.
Assuming that land use change does not increase CO\(_{2}\) emissions.
References
Alcantara V, Duro JA (2004) Inequality of energy intensities across OECD countries: a note. Energy Policy 32(11):1257–1260
Aldy J (2006) Per capita carbon dioxide emissions: Convergence or divergence? Environ Resour Econ 33(4):533–555
Anand S, Sen A (2000) Human development and economic sustainability. World Dev 28(12):2029–2049
Araar A (2006) On the decomposition of the gini coefficient: an exact approach, with an illustration using Cameroonian data CIRPEE
Atkinson AB (1970) On the measurement of inequality. J Econ Theory 2(3):244–263
Aubauer HP (2006) A just and efficient reduction of resource throughput to optimum. Ecol Econ 58(3):637–649
Brooks N, Sethi R (1997) The distribution of pollution: community characteristics and exposure to air toxics. J Environ Econ Manag 32(2):233–250
Bourguignon F (1979) Decomposable income inequality measures. Econometrica 47(4):901–920
Cantore N (2011) Distributional aspects of emissions in climate change integrated assessment models. Energy Policy 39(5):2919–2924
Cowell F (1980) On the structure of additive inequality measures. Rev Econ Stud 47(3):521–531
Cowell F (2000) Chapter 2 measurement of inequality. In: Atkinson AB, Bourguignon F (eds) Handbook of income distribution. Elsevier, Amsterdam, pp 87–166
Cowell F (2011) Measuring inequality. Oxford University Press, New York
Criado CO, Grether J (2010) Convergence in per capita CO\(_{2}\) emissions: a robust distributional approach. CEPE Center for Energy Policy and Economics, ETH Zürich
Daly HE (1992) Allocation, distribution, and scale: towards an economics that is efficient, just, and sustainable. Ecol Econ 6(3):185–193
Daly HE, Farley J (eds) (2004) Ecological economics: principles and applications, 2nd edn. Island Press, Washington
Dongjing C, Xiaoyan M, Hairong M, Peiying L (2010) The inequality of natural resources consumption and its relationship with the social development level based on the ecological footprint and the HDI. J Environ Assess Policy Manag 12(1):69–85
Duro JA (2012a) On the automatic application of inequality indices in the analysis of the international distribution of environmental indicators. Ecol Econ 76:1–7
Duro JA (2013) Weighting vectors and international inequality changes in environmental indicators: an analysis of CO\(_{2}\) per capita emissions and Kaya factors. Energ Econ 39:122–127
Duro JA, Teixidó-Figueras J (2013) Ecological Footprint Inequality across countries: the role of environment intensity, income and interaction effects. Ecol Econ 93:34–41
Duro JA, Alcántara V, Padilla E (2010) International inequality in energy intensity levels and the role of production composition and energy efficiency: an analysis of OECD countries. Ecol Econ (In press)
Duro JA, Padilla E (2006) International inequalities in per capita CO\(_{2}\) emissions: a decomposition methodology by kaya factors. Energy Econ 28(2):170–187
Duro JA, Padilla E (2008) Analysis of the international distribution of per capita CO\(_{2}\) emissions using the polarization concept. Energy Policy 36(1):456–466
Duro JA, Padilla E (2011) Inequality across countries in energy intensities: an analysis of the role of energy transformation and final energy consumption. Energy Econ 33(3):474–479
Ewing B, Moore D, Goldfinger S, Oursler A, Reed A, Wackernagel M (2010a) The ecological footprint atlas 2010. Oakland: Global Footprint Network
Ewing B, Reed A, Galli A, Kitzes J, Wackernagel M (2010) Calculation methodology for the national footprint accounts, 2010th edn. Global Footprint Network, Oakland
Ezcurra R (2007) Is there cross-country convergence in carbon dioxide emissions? Energy Policy 35(2):1363–1372
Fei JCH, Rainis G, Kuo SWY (1978) Growth and the family distribution of income by factor components. Q J Econ 92(1):17–53
Fiala N (2008) Measuring sustainability: why the ecological footprint is bad economics and bad environmental science. Ecol Econ 67(4):519–525
Global Footprint Network (2010) Global footprint network, 2010 edition. Retrieved April 2011 from www.footprintnetwork.org
Goerlich FJ (1998) Desigualdad, Diversidad y Convergencia:(algunos) instrumentos de medida. Instituto Valenciano de Investigaciones económicas, Mimeo
Groot L (2010) Carbon Lorenz curves. Resour Energy Econ 32(1):45–64
Hedenus F, Azar C (2005) Estimates of trends in global income and resource inequalities. Ecol Econ 55(3): 351–364
Heil MT, Wodon QT (1997) Inequality in CO\(_{2}\) emissions between poor and rich countries. J Environ Dev 6(4):426–452
Heil MT, Wodon QT (2000) Future inequality in CO\(_{2}\) emissions and the impact of abatement proposals. Environ Resour Econ 17(2):163–181
Kolm S (1976) Unequal inequalities II. J Econ Theory 13(1):82–111
List J (1999) Have air pollutant emissions converged among U.S. regions? evidence from unit root tests. South Econ J 66(1):144–155
Maguire K, Sheriff G (2011) Comparing distributions of environmental outcomes for regulatory environmental justice analysis. Int J Environ Res Public Health 8(5):1707–1726
Martinez-Alier J, Munda G, O’Neill J (1998) Weak comparability of values as a foundation for ecological economics. Ecol Econ 26(3):277–286
Martinez-Alier J, O’Connor M (1999) Distributional issues: an overview. In: van den Bergh JCJM (ed) Handbook of environmental and resource economics. Edward Elgar Publishing Limited, Northampton, MA, pp 380–392
Martinez-Alier J, Roca J (eds) (2001) Economía ecológica y política ambiental. Fondo de Cultura económica, Mexico, DF
Miketa A, Mulder P (2005) Energy productivity across developed and developing countries in 10 manufacturing sectors: patterns of growth and convergence. Energy Econ 27(3):429–453
Van Nguyen P (2005) Distribution dynamics of CO\(_{2}\) emissions. Environ Resour Econ 32(4):495–508
Padilla E (2002) Intergenerational equity and sustainability. Ecol Econ 41(1):69–83
Padilla E, Serrano A (2006) Inequality in CO\(_{2}\) emissions across countries and its relationship with income inequality: a distributive approach. Energy Policy 34(14):1762–1772
Rees WE (1992) Ecological footprints and appropriated carrying capacity: what urban economics leaves out. Environ Urban 4(2):121–130
Røpke I (Ed.) (2001) Human ecology in the new millenium. Ecological unequal exchange, chapter 4
Sastre M, Trannoy A (2002) Shapley inequality decomposition by factor components, Some methodological issues. Springer, Wien
Shorrocks AF (1980) The class of additively decomposable inequality measures. Econometrica 48(3):613–625
Shorrocks AF (1982) Inequality decomposition by factor components. Econometrica 50(1):193–211
Shorrocks AF (1984) Inequality decomposition by population subgroups. Econometrica 52(6):1369–1385
Shorrocks AF (1988) Aggregation issues in inequality measures. In: Eichlorn W (ed) Measurement in economics. Physica-Verlag, Wurzburg
Shorrocks AF, Foster JE (1987) Transfer sensitive inequality measures. Rev Econ Stud 54(3):485–497
Steinberger JK, Krausmann F, Eisenmenger N (2010) Global patterns of materials use: a socioeconomic and geophysical analysis. Ecol Econ 69(5):1148–1158
Strazicich MC, List JA (2003) Are CO\(_{2}\) emission levels converging among industrial countries? Environ Resour Econ 24(3):263–271
Theil H (1979) The measurement of inequality by components of income. Econ Lett 2(2):197–199
Van den Bergh J, Verbruggen H (1999) Spatial sustainability, trade and indicators: An evaluation of the ‘ecological footprint’. Ecol Econ 29(1):61–72
Wackernagel M, Rees W (eds) (1996) Our ecological footprint: reducing human impact on the earth. New Society Press, Filadelfia, PA
Wackernagel M, Monfreda C, Schulz NB, Erb K, Haberl H, Krausmann F (2004) Calculating national and global ecological footprint time series: resolving conceptual challenges. Land Use Policy 21(3):271–278
White T (2000) Diet and the distribution of environmental impact. Ecol Econ 34(1):145–153
White TJ (2007) Sharing resources: the global distribution of the ecological footprint. Ecol Econ 64(2): 402–410
Wu C, Xu Z (2010) Spatial distribution of the environmental resource consumption in the Heihe river basin of northwestern China. Reg Environ Change 10(1):55–63
Acknowledgments
The authors thank two anonymous reviewers for their helpful comments and suggestions. Financial support from the Project ECO2010-18158 is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix 1: World Ecological Footprint Per Capita
Year | Cropland | Grazing land | Forest | Fishing ground | Carbon F. | Built land | EF | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1961 | 1.13 | (48.16 %) | 0.39 | (16.54 %) | 0.40 | (17.04 %) | 0.09 | (3.89 %) | 0.27 | (11.63 %) | 0.06 | (2.75 %) | 2.36 |
1962 | 1.12 | (47.00 %) | 0.39 | (16.38 %) | 0.40 | (16.70 %) | 0.09 | (3.92 %) | 0.32 | (13.28 %) | 0.06 | (2.72 %) | 2.38 |
1963 | 1.10 | (45.41 %) | 0.39 | (16.00 %) | 0.39 | (16.17 %) | 0.09 | (3.87 %) | 0.39 | (15.88 %) | 0.06 | (2.67 %) | 2.43 |
1964 | 1.08 | (43.79 %) | 0.38 | (15.53 %) | 0.40 | (16.13 %) | 0.09 | (3.72 %) | 0.45 | (18.22 %) | 0.06 | (2.62 %) | 2.48 |
1965 | 1.07 | (42.26 %) | 0.39 | (15.34 %) | 0.40 | (15.71 %) | 0.10 | (3.79 %) | 0.51 | (20.32 %) | 0.06 | (2.57 %) | 2.52 |
1966 | 1.05 | (41.09 %) | 0.37 | (14.51 %) | 0.40 | (15.52 %) | 0.10 | (3.89 %) | 0.57 | (22.44 %) | 0.06 | (2.55 %) | 2.55 |
1967 | 1.03 | (40.36 %) | 0.37 | (14.41 %) | 0.39 | (15.38 %) | 0.10 | (3.97 %) | 0.60 | (23.34 %) | 0.06 | (2.55 %) | 2.55 |
1968 | 1.02 | (39.13 %) | 0.36 | (14.01 %) | 0.39 | (14.91 %) | 0.10 | (4.01 %) | 0.66 | (25.44 %) | 0.07 | (2.50 %) | 2.60 |
1969 | 1.01 | (37.96 %) | 0.35 | (13.26 %) | 0.38 | (14.46 %) | 0.10 | (3.80 %) | 0.75 | (28.08 %) | 0.07 | (2.45 %) | 2.66 |
1970 | 0.99 | (35.99 %) | 0.35 | (12.61 %) | 0.38 | (13.95 %) | 0.10 | (3.65 %) | 0.87 | (31.43 %) | 0.07 | (2.36 %) | 2.76 |
1971 | 0.97 | (35.07 %) | 0.34 | (12.29 %) | 0.38 | (13.75 %) | 0.10 | (3.60 %) | 0.91 | (32.95 %) | 0.07 | (2.35 %) | 2.78 |
1972 | 0.96 | (34.04 %) | 0.34 | (12.16 %) | 0.37 | (13.31 %) | 0.10 | (3.60 %) | 0.97 | (34.56 %) | 0.07 | (2.32 %) | 2.81 |
1973 | 0.94 | (32.92 %) | 0.33 | (11.44 %) | 0.38 | (13.28 %) | 0.10 | (3.56 %) | 1.04 | (36.51 %) | 0.07 | (2.28 %) | 2.86 |
1974 | 0.93 | (32.84 %) | 0.34 | (12.07 %) | 0.37 | (13.17 %) | 0.10 | (3.62 %) | 1.02 | (35.99 %) | 0.07 | (2.31 %) | 2.82 |
1975 | 0.91 | (32.91 %) | 0.34 | (12.26 %) | 0.36 | (12.86 %) | 0.10 | (3.47 %) | 1.00 | (36.14 %) | 0.07 | (2.36 %) | 2.77 |
1976 | 0.90 | (31.89 %) | 0.33 | (11.59 %) | 0.36 | (12.94 %) | 0.10 | (3.47 %) | 1.06 | (37.78 %) | 0.07 | (2.32 %) | 2.81 |
1977 | 0.88 | (31.38 %) | 0.31 | (11.10 %) | 0.36 | (12.73 %) | 0.10 | (3.39 %) | 1.10 | (39.08 %) | 0.07 | (2.32 %) | 2.81 |
1978 | 0.87 | (30.89 %) | 0.30 | (10.67 %) | 0.36 | (12.76 %) | 0.10 | (3.41 %) | 1.13 | (39.95 %) | 0.07 | (2.32 %) | 2.82 |
1979 | 0.86 | (30.24 %) | 0.30 | (10.60 %) | 0.36 | (12.80 %) | 0.09 | (3.32 %) | 1.16 | (40.74 %) | 0.07 | (2.30 %) | 2.84 |
1980 | 0.85 | (30.41 %) | 0.30 | (10.75 %) | 0.36 | (12.86 %) | 0.09 | (3.35 %) | 1.12 | (40.27 %) | 0.07 | (2.36 %) | 2.78 |
1981 | 0.83 | (30.64 %) | 0.29 | (10.81 %) | 0.35 | (12.83 %) | 0.10 | (3.53 %) | 1.08 | (39.78 %) | 0.07 | (2.41 %) | 2.72 |
1982 | 0.82 | (31.04 %) | 0.29 | (10.76 %) | 0.34 | (12.76 %) | 0.10 | (3.63 %) | 1.04 | (39.34 %) | 0.07 | (2.48 %) | 2.65 |
1983 | 0.81 | (30.73 %) | 0.29 | (11.04 %) | 0.35 | (13.08 %) | 0.09 | (3.56 %) | 1.03 | (39.11 %) | 0.07 | (2.47 %) | 2.64 |
1984 | 0.80 | (30.23 %) | 0.27 | (10.32 %) | 0.35 | (13.28 %) | 0.09 | (3.58 %) | 1.06 | (40.12 %) | 0.07 | (2.46 %) | 2.65 |
1985 | 0.79 | (30.51 %) | 0.23 | (8.83 %) | 0.35 | (13.34 %) | 0.09 | (3.65 %) | 1.07 | (41.16 %) | 0.07 | (2.50 %) | 2.60 |
1986 | 0.78 | (30.08 %) | 0.23 | (8.75 %) | 0.35 | (13.40 %) | 0.10 | (3.72 %) | 1.08 | (41.55 %) | 0.07 | (2.50 %) | 2.61 |
1987 | 0.77 | (29.24 %) | 0.23 | (8.70 %) | 0.35 | (13.36 %) | 0.10 | (3.82 %) | 1.12 | (42.43 %) | 0.07 | (2.46 %) | 2.64 |
1988 | 0.76 | (28.39 %) | 0.24 | (8.97 %) | 0.35 | (13.07 %) | 0.10 | (3.84 %) | 1.16 | (43.30 %) | 0.07 | (2.43 %) | 2.68 |
1989 | 0.75 | (27.87 %) | 0.24 | (8.97 %) | 0.35 | (12.99 %) | 0.11 | (3.96 %) | 1.18 | (43.79 %) | 0.07 | (2.42 %) | 2.69 |
1990 | 0.74 | (27.82 %) | 0.24 | (9.06 %) | 0.34 | (12.88 %) | 0.10 | (3.79 %) | 1.17 | (43.99 %) | 0.07 | (2.45 %) | 2.65 |
1991 | 0.73 | (27.75 %) | 0.24 | (9.34 %) | 0.32 | (12.28 %) | 0.10 | (3.75 %) | 1.16 | (44.39 %) | 0.07 | (2.49 %) | 2.61 |
1992 | 0.70 | (27.02 %) | 0.24 | (9.24 %) | 0.31 | (12.03 %) | 0.11 | (4.10 %) | 1.18 | (45.15 %) | 0.06 | (2.46 %) | 2.60 |
1993 | 0.69 | (26.82 %) | 0.24 | (9.24 %) | 0.31 | (11.82 %) | 0.11 | (4.12 %) | 1.18 | (45.52 %) | 0.06 | (2.48 %) | 2.59 |
1994 | 0.68 | (26.57 %) | 0.24 | (9.28 %) | 0.30 | (11.73 %) | 0.11 | (4.32 %) | 1.17 | (45.61 %) | 0.06 | (2.49 %) | 2.57 |
1995 | 0.67 | (25.93 %) | 0.24 | (9.41 %) | 0.30 | (11.68 %) | 0.11 | (4.41 %) | 1.20 | (46.10 %) | 0.06 | (2.47 %) | 2.60 |
1996 | 0.66 | (25.46 %) | 0.23 | (9.04 %) | 0.30 | (11.45 %) | 0.12 | (4.45 %) | 1.22 | (47.12 %) | 0.06 | (2.47 %) | 2.60 |
1997 | 0.65 | (25.41 %) | 0.23 | (8.83 %) | 0.30 | (11.65 %) | 0.11 | (4.47 %) | 1.21 | (47.14 %) | 0.06 | (2.50 %) | 2.57 |
1998 | 0.65 | (25.50 %) | 0.23 | (8.88 %) | 0.29 | (11.36 %) | 0.11 | (4.48 %) | 1.20 | (47.24 %) | 0.06 | (2.53 %) | 2.54 |
1999 | 0.64 | (25.32 %) | 0.22 | (8.87 %) | 0.29 | (11.65 %) | 0.11 | (4.51 %) | 1.19 | (47.11 %) | 0.06 | (2.54 %) | 2.53 |
2000 | 0.63 | (24.97 %) | 0.22 | (8.88 %) | 0.30 | (11.76 %) | 0.11 | (4.34 %) | 1.20 | (47.51 %) | 0.06 | (2.54 %) | 2.53 |
2001 | 0.63 | (24.95 %) | 0.22 | (8.86 %) | 0.28 | (11.30 %) | 0.11 | (4.39 %) | 1.20 | (47.95 %) | 0.06 | (2.56 %) | 2.51 |
2002 | 0.62 | (24.46 %) | 0.23 | (8.97 %) | 0.28 | (11.24 %) | 0.11 | (4.31 %) | 1.22 | (48.46 %) | 0.06 | (2.55 %) | 2.52 |
2003 | 0.61 | (23.83 %) | 0.22 | (8.77 %) | 0.28 | (11.08 %) | 0.11 | (4.25 %) | 1.27 | (49.56 %) | 0.06 | (2.50 %) | 2.56 |
2004 | 0.61 | (23.16 %) | 0.21 | (8.18 %) | 0.29 | (10.96 %) | 0.11 | (4.22 %) | 1.33 | (51.03 %) | 0.06 | (2.45 %) | 2.62 |
2005 | 0.60 | (22.62 %) | 0.22 | (8.12 %) | 0.29 | (10.97 %) | 0.11 | (4.18 %) | 1.37 | (51.69 %) | 0.06 | (2.41 %) | 2.66 |
2006 | 0.59 | (22.17 %) | 0.22 | (8.07 %) | 0.28 | (10.61 %) | 0.11 | (4.12 %) | 1.41 | (52.63 %) | 0.06 | (2.39 %) | 2.68 |
2007 | 0.59 | (21.69 %) | 0.21 | (7.75 %) | 0.29 | (10.61 %) | 0.11 | (4.03 %) | 1.44 | (53.54 %) | 0.06 | (2.37 %) | 2.70 |
Appendix 2: Countries Sampled and World Bank Regional Groups
East Asia and Pacific Cambodia; China; Indonesia; Korea, DPR; Korea, Rep; Lao PDR; Malaysia; Myanmar; Papua New Guinea; Philippines; Singapore; Thailand; Timor-Leste; Vietnam.
Europe and Central Asia Albania; Bulgaria; Hungary; Poland; Romania; Turkey.
Industrial Australia; Austria; Belgium; Canada; Denmark; Finland; France; Germany; Greece; Ireland; Italy; Japan; Luxembourg; Netherlands; New Zealand; Norway; Portugal; Spain; Sweden; Switzerland; United Kingdom; United States of America.
Latin America and Caribbean Argentina; Bolivia; Brazil; Chile; Colombia; Costa Rica; Cuba; Dominican Republic; Ecuador; El Salvador; Guatemala; Haiti; Honduras; Jamaica; Mexico; Nicaragua; Panama; Paraguay; Peru; Trinidad and Tobago; Uruguay; Venezuela Bolivarian Rep.
Middle East and North Africa Algeria; Egypt; Iran; Iraq; Israel; Jordan; Kuwait; Lebanon; Libyan AJ; Morocco; Oman; Qatar; Saudi Arabia; Syrian AR; Tunisia; Yemen.
South Asia Afghanistan; India; Nepal; Pakistan; Sri Lanka.
Sub-Saharan Africa Angola; Benin; Burkina Faso; Burundi; Cameroon; Central African R; Chad; Congo; Congo, DR; Côte d’Ivoire; Gabon; Gambia; Ghana; Guinea; Guinea-Bissau; Kenya; Liberia; Madagascar; Mali; Mauritania; Mauritius; Mozambique; Namibia; Niger; Nigeria; Rwanda; Senegal; Sierra Leone; Somalia; South Africa; Sudan; Togo; Uganda; Zimbabwe.
Appendix 3: Inequality Indices of EF Per Capita
Year | GINI | T(0) | T(1) | T(2) | CV\(^{2}\) | A(0.5) | A(1) |
---|---|---|---|---|---|---|---|
1961 | 0.331863 | 0.179226 | 0.189064 | 0.221799 | 0.443598 | 0.088832 | 0.164083 |
1962 | 0.340601 | 0.18826 | 0.198431 | 0.233125 | 0.46625 | 0.093128 | 0.171601 |
1963 | 0.348073 | 0.195861 | 0.207045 | 0.245799 | 0.491598 | 0.096857 | 0.177873 |
1964 | 0.346067 | 0.193413 | 0.204768 | 0.242528 | 0.485056 | 0.095781 | 0.175858 |
1965 | 0.357436 | 0.205764 | 0.217594 | 0.258574 | 0.517148 | 0.101607 | 0.185975 |
1966 | 0.365708 | 0.215069 | 0.227701 | 0.274284 | 0.548568 | 0.105995 | 0.193514 |
1967 | 0.368823 | 0.220491 | 0.233514 | 0.279064 | 0.558128 | 0.108694 | 0.197875 |
1968 | 0.382148 | 0.236772 | 0.254051 | 0.312909 | 0.625818 | 0.117006 | 0.210828 |
1969 | 0.391247 | 0.249119 | 0.266751 | 0.329111 | 0.658222 | 0.122718 | 0.220513 |
1970 | 0.389138 | 0.247006 | 0.262932 | 0.319889 | 0.639778 | 0.121455 | 0.218864 |
1971 | 0.403557 | 0.265816 | 0.283596 | 0.350375 | 0.70075 | 0.130326 | 0.23342 |
1972 | 0.40974 | 0.275489 | 0.292825 | 0.361321 | 0.722642 | 0.134602 | 0.240799 |
1973 | 0.415801 | 0.284671 | 0.304146 | 0.379181 | 0.758362 | 0.139184 | 0.247738 |
1974 | 0.408946 | 0.27418 | 0.289289 | 0.354787 | 0.709574 | 0.133488 | 0.239805 |
1975 | 0.398244 | 0.258086 | 0.277122 | 0.344603 | 0.689206 | 0.127065 | 0.227471 |
1976 | 0.411443 | 0.277105 | 0.29676 | 0.371164 | 0.742328 | 0.135767 | 0.242025 |
1977 | 0.413506 | 0.279962 | 0.30151 | 0.380464 | 0.760928 | 0.137442 | 0.244187 |
1978 | 0.413749 | 0.279761 | 0.300625 | 0.37962 | 0.75924 | 0.137135 | 0.244035 |
1979 | 0.418671 | 0.28729 | 0.307383 | 0.388589 | 0.777178 | 0.140282 | 0.249706 |
1980 | 0.404805 | 0.268524 | 0.28246 | 0.344797 | 0.689594 | 0.130622 | 0.235493 |
1981 | 0.402587 | 0.262972 | 0.280508 | 0.349538 | 0.699076 | 0.128809 | 0.231237 |
1982 | 0.401942 | 0.262577 | 0.280454 | 0.352258 | 0.704516 | 0.128627 | 0.230933 |
1983 | 0.381493 | 0.23479 | 0.250775 | 0.30778 | 0.61556 | 0.115723 | 0.209263 |
1984 | 0.398198 | 0.256443 | 0.275983 | 0.347329 | 0.694658 | 0.12624 | 0.226201 |
1985 | 0.403467 | 0.26323 | 0.285199 | 0.363881 | 0.727762 | 0.129786 | 0.231435 |
1986 | 0.399454 | 0.258645 | 0.279678 | 0.354078 | 0.708156 | 0.127559 | 0.227903 |
1987 | 0.401498 | 0.261941 | 0.280809 | 0.352391 | 0.704782 | 0.128578 | 0.230443 |
1988 | 0.391679 | 0.24834 | 0.266193 | 0.330683 | 0.661366 | 0.122253 | 0.219905 |
1989 | 0.39766 | 0.257045 | 0.278703 | 0.353083 | 0.706166 | 0.126997 | 0.226666 |
1990 | 0.397332 | 0.256368 | 0.276652 | 0.349914 | 0.699828 | 0.126318 | 0.226143 |
1991 | 0.386913 | 0.242348 | 0.258756 | 0.321538 | 0.643076 | 0.11912 | 0.215217 |
1992 | 0.392158 | 0.248985 | 0.271967 | 0.350584 | 0.701168 | 0.123491 | 0.220409 |
1993 | 0.376785 | 0.229976 | 0.244149 | 0.302631 | 0.605262 | 0.112856 | 0.205447 |
1994 | 0.38846 | 0.244235 | 0.262502 | 0.332241 | 0.664482 | 0.120241 | 0.216696 |
1995 | 0.382126 | 0.23678 | 0.250645 | 0.309904 | 0.619808 | 0.115911 | 0.210835 |
1996 | 0.382961 | 0.238944 | 0.250801 | 0.310256 | 0.620512 | 0.11633 | 0.212541 |
1997 | 0.388101 | 0.243835 | 0.260967 | 0.329826 | 0.659652 | 0.119759 | 0.216383 |
1998 | 0.389878 | 0.245512 | 0.267234 | 0.344002 | 0.688004 | 0.12154 | 0.217696 |
1999 | 0.389766 | 0.245884 | 0.267659 | 0.343098 | 0.686196 | 0.121786 | 0.217987 |
2000 | 0.391711 | 0.248794 | 0.268371 | 0.342659 | 0.685318 | 0.122543 | 0.22026 |
2001 | 0.391375 | 0.249028 | 0.266981 | 0.338792 | 0.677584 | 0.12228 | 0.220442 |
2002 | 0.39272 | 0.251387 | 0.267341 | 0.336766 | 0.673532 | 0.122897 | 0.222279 |
2003 | 0.390124 | 0.247222 | 0.263856 | 0.334474 | 0.668948 | 0.121108 | 0.219033 |
2004 | 0.394409 | 0.253854 | 0.26877 | 0.339853 | 0.679706 | 0.123678 | 0.224195 |
2005 | 0.389538 | 0.248936 | 0.262337 | 0.330875 | 0.66175 | 0.121054 | 0.22037 |
2006 | 0.381548 | 0.239448 | 0.247386 | 0.303389 | 0.606778 | 0.115576 | 0.212938 |
2007 | 0.377429 | 0.233587 | 0.240921 | 0.292457 | 0.584914 | 0.112849 | 0.208311 |
Appendix 4: Natural Decomposition of the EF Per Capita
Year | Fishing | Cropland | Grazing | Forest | Carbon | Built | Total |
---|---|---|---|---|---|---|---|
1961 | 0.0654 | 0.3593 | 0.2007 | 0.1853 | 0.1751 | 0.0146 | 1 |
1962 | 0.0646 | 0.3513 | 0.1890 | 0.1871 | 0.1934 | 0.0150 | 1 |
1963 | 0.0610 | 0.3494 | 0.1733 | 0.1717 | 0.2308 | 0.0124 | 1 |
1964 | 0.0591 | 0.2949 | 0.1739 | 0.1790 | 0.2807 | 0.0137 | 1 |
1965 | 0.0576 | 0.2946 | 0.1501 | 0.1751 | 0.3114 | 0.0116 | 1 |
1966 | 0.0558 | 0.2737 | 0.1468 | 0.1703 | 0.3425 | 0.0102 | 1 |
1967 | 0.0576 | 0.2744 | 0.1333 | 0.1613 | 0.3620 | 0.0118 | 1 |
1968 | 0.0526 | 0.2759 | 0.1243 | 0.1532 | 0.3856 | 0.0091 | 1 |
1969 | 0.0469 | 0.2665 | 0.1086 | 0.1490 | 0.4209 | 0.0085 | 1 |
1970 | 0.0481 | 0.2146 | 0.0980 | 0.1418 | 0.4892 | 0.0084 | 1 |
1971 | 0.0418 | 0.2325 | 0.0899 | 0.1382 | 0.4881 | 0.0090 | 1 |
1972 | 0.0416 | 0.2165 | 0.0872 | 0.1269 | 0.5176 | 0.0099 | 1 |
1973 | 0.0393 | 0.1922 | 0.0860 | 0.1316 | 0.5424 | 0.0083 | 1 |
1974 | 0.0413 | 0.1916 | 0.0999 | 0.1302 | 0.5310 | 0.0080 | 1 |
1975 | 0.0383 | 0.2103 | 0.1091 | 0.1179 | 0.5184 | 0.0083 | 1 |
1976 | 0.0395 | 0.1937 | 0.0929 | 0.1235 | 0.5437 | 0.0061 | 1 |
1977 | 0.0350 | 0.1936 | 0.0802 | 0.1221 | 0.5614 | 0.0086 | 1 |
1978 | 0.0354 | 0.1792 | 0.0796 | 0.1313 | 0.5663 | 0.0078 | 1 |
1979 | 0.0350 | 0.1874 | 0.0736 | 0.1312 | 0.5655 | 0.0076 | 1 |
1980 | 0.0390 | 0.1709 | 0.0779 | 0.1328 | 0.5710 | 0.0099 | 1 |
1981 | 0.0351 | 0.1926 | 0.0804 | 0.1302 | 0.5529 | 0.0100 | 1 |
1982 | 0.0380 | 0.2385 | 0.0799 | 0.1169 | 0.5150 | 0.0115 | 1 |
1983 | 0.0404 | 0.1624 | 0.0854 | 0.1407 | 0.5602 | 0.0085 | 1 |
1984 | 0.0363 | 0.1831 | 0.0738 | 0.1433 | 0.5517 | 0.0105 | 1 |
1985 | 0.0393 | 0.2015 | 0.0525 | 0.1429 | 0.5523 | 0.0096 | 1 |
1986 | 0.0393 | 0.1899 | 0.0475 | 0.1526 | 0.5620 | 0.0096 | 1 |
1987 | 0.0439 | 0.1673 | 0.0478 | 0.1539 | 0.5789 | 0.0098 | 1 |
1988 | 0.0428 | 0.1368 | 0.0603 | 0.1488 | 0.6038 | 0.0084 | 1 |
1989 | 0.0440 | 0.1446 | 0.0500 | 0.1517 | 0.6011 | 0.0084 | 1 |
1990 | 0.0403 | 0.1584 | 0.0454 | 0.1481 | 0.5998 | 0.0080 | 1 |
1991 | 0.0410 | 0.1571 | 0.0513 | 0.1287 | 0.6108 | 0.0089 | 1 |
1992 | 0.0399 | 0.1546 | 0.0478 | 0.1297 | 0.6197 | 0.0084 | 1 |
1993 | 0.0401 | 0.1355 | 0.0534 | 0.1392 | 0.6230 | 0.0077 | 1 |
1994 | 0.0422 | 0.1540 | 0.0427 | 0.1377 | 0.6139 | 0.0083 | 1 |
1995 | 0.0441 | 0.1296 | 0.0520 | 0.1385 | 0.6267 | 0.0081 | 1 |
1996 | 0.0382 | 0.1332 | 0.0462 | 0.1307 | 0.6432 | 0.0087 | 1 |
1997 | 0.0388 | 0.1273 | 0.0400 | 0.1337 | 0.6530 | 0.0078 | 1 |
1998 | 0.0334 | 0.1311 | 0.0398 | 0.1347 | 0.6529 | 0.0084 | 1 |
1999 | 0.0350 | 0.1276 | 0.0379 | 0.1354 | 0.6570 | 0.0085 | 1 |
2000 | 0.0326 | 0.1241 | 0.0373 | 0.1364 | 0.6610 | 0.0085 | 1 |
2001 | 0.0352 | 0.1204 | 0.0375 | 0.1284 | 0.6698 | 0.0077 | 1 |
2002 | 0.0339 | 0.1154 | 0.0398 | 0.1305 | 0.6735 | 0.0086 | 1 |
2003 | 0.0308 | 0.1262 | 0.0424 | 0.1269 | 0.6652 | 0.0069 | 1 |
2004 | 0.0291 | 0.1305 | 0.0345 | 0.1284 | 0.6691 | 0.0082 | 1 |
2005 | 0.0276 | 0.1233 | 0.0352 | 0.1332 | 0.6725 | 0.0069 | 1 |
2006 | 0.0294 | 0.1074 | 0.0353 | 0.1227 | 0.6986 | 0.0071 | 1 |
2007 | 0.0292 | 0.1163 | 0.0370 | 0.1172 | 0.6923 | 0.0073 | 1 |
Rights and permissions
About this article
Cite this article
Teixidó-Figueras, J., Duro, J.A. International Ecological Footprint Inequality: A Methodological Review and Some Results. Environ Resource Econ 60, 607–631 (2015). https://doi.org/10.1007/s10640-014-9784-x
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10640-014-9784-x
Keywords
- Ecological Footprint
- International environmetal distribution
- Inequality measurement
- Inequality decomposition