Scientific Ambiguity and Climate Policy

Abstract

Economic evaluation of climate policy traditionally treats uncertainty by appealing to expected utility theory. Yet our knowledge of the impacts of climate policy may not be of sufficient quality to be described by unique probabilistic beliefs. In such circumstances, it has been argued that the axioms of expected utility theory may not be the correct standard of rationality. By contrast, several axiomatic frameworks have recently been proposed that account for ambiguous knowledge. In this paper, we apply static and dynamic versions of a smooth ambiguity model to climate mitigation policy. We obtain a general result on the comparative statics of optimal abatement and ambiguity aversion, and then extend our analysis to a more realistic, dynamic setting, where we introduce scientific ambiguity into the well-known DICE model of the climate-economy system. For policy-relevant exogenous mitigation policies, we show that the value of emissions abatement increases as ambiguity aversion increases, and that this ‘ambiguity premium’ can in some plausible cases be very large. In these cases the effect of ambiguity aversion on welfare is comparable to that of other much studied welfare parameters. Thus ambiguity aversion may be an important neglected aspect of climate change economics, and seems likely to provide another argument for strong abatement policy.

This is a preview of subscription content, access via your institution.

References

  1. Ackerman F, Stanton EA, Bueno R (2010) Fat tails, exponents, and extreme uncertainty: simulating catastrophe in DICE. Ecol Econ 69(8): 1657–1665

    Article  Google Scholar 

  2. Anscombe FJ, Aumann RJ (1963) A definition of subjective probability. Ann Math Stat 34(1): 199–205

    Article  Google Scholar 

  3. Arrow KJ, Hurwicz L (eds) (1977) An optimality criterion for decision-making under ignorance. In: Studies in resource allocation processes, p 482. Cambridge University Press, Cambridge

  4. Athanassoglou S, Xepapadeas A (2012) Pollution control with uncertain stock dynamics: when, and how, to be precautious. J Environ Econ Manag 63(3): 304–320

    Article  Google Scholar 

  5. Bassett GW, Koenker R, Kordas G (2004) Pessimistic portfolio allocation and choquet expected utility. J Financ Econom 2(4): 477–492

    Article  Google Scholar 

  6. Binmore K. (2009) Rational decisions. Princeton University Press, Princeton, NJ

    Google Scholar 

  7. Bossaerts P, Ghirardato P, Guarnaschelli S, Zame WR (2010) Ambiguity in asset markets: theory and experiment. Rev Financ Stud 23(4):1325–1359

    Google Scholar 

  8. Cai Y, Judd KL, Lontzek TS (2012) DSICE: a dynamic stochastic integrated model of climate and economy. SSRN working paper

  9. Camerer C (1999) Ambiguity-aversion and non-additive probability: experimental evidence, models and applications. In: Luini L (eds) Uncertain decisions: bridging theory and experiments. Kluwer, Dordrecht, pp 53–80

    Google Scholar 

  10. Dasgupta P (2008) Discounting climate change. J Risk Uncertain 37(2): 141–169

    Article  Google Scholar 

  11. Dow J, da Costa Werlang SR (1992) Uncertainty aversion, risk aversion, and the optimal choice of portfolio. Econometrica 60(1): 197–204

    Article  Google Scholar 

  12. Ellsberg D (1961) Risk, ambiguity, and the Savage axioms. Q J Econ 75(4): 643–669

    Article  Google Scholar 

  13. Frame DJ, Faull NE, Joshi MM, Allen MR (2007) Probabilistic climate forecasts and inductive problems. Philos Trans R Soc A Math Phys Eng Sci 365(1857): 1971–1992

    Article  Google Scholar 

  14. Ghirardato P, Maccheroni F, Marinacci M (2004) Differentiating ambiguity and ambiguity attitude. J Econ Theory 118(2): 133–173

    Article  Google Scholar 

  15. Gilboa I (2009) Theory of decision under uncertainty, 1st edn. Cambridge University Press, Cambridge, MA

    Book  Google Scholar 

  16. Gilboa I, Postlewaite A, Schmeidler D (2009) Is it always rational to satisfy Savage’s axioms?. Econ Philos 25(3): 285–296

    Article  Google Scholar 

  17. Gilboa I, Postlewaite AW, Schmeidler D (2008) Probability and uncertainty in economic modeling. J Econ Perspect 22(3): 173–188

    Article  Google Scholar 

  18. Gilboa I, Schmeidler D (1989) Maxmin expected utility with non-unique prior. J Math Econ 18(2): 141–153

    Article  Google Scholar 

  19. Gilboa I, Schmeidler D (1995) Case-based decision theory. Q J Econ 110(3): 605–639

    Article  Google Scholar 

  20. Gollier C (2001) The economics of risk and time. MIT Press, Cambridge

    Google Scholar 

  21. Gollier C (2009) Portfolio choices and asset prices: the comparative statics of ambiguity aversion. IDEI working paper 357. http://idei.fr/display.php?a=4812

  22. Gollier C, Gierlinger J (2008) Socially efficient discounting under ambiguity aversion. IDEI working paper 561. http://idei.fr/display.php?a=9848

  23. Gonzalez F (2008) Precautionary principle and robustness for a stock pollutant with multiplicative risk. Environ Resour Econ 41(1): 25–46

    Article  Google Scholar 

  24. Hansen LP, Sargent TJ (2007) Robustness. Princeton University Press, Princeton, NJ

    Google Scholar 

  25. Heal G (2009) Climate economics: a meta-review and some suggestions for future research. Rev Environ Econ Policy 3(1): 4–21

    Article  Google Scholar 

  26. Henry C, Henry M (2002) Formalization and application of the precautionary principle. Columbia University Department of Economics discussion paper series. http://www.columbia.edu/cu/economics/discpapr/DP0102-22.pdf

  27. Herstein IN, Milnor J (1953) An axiomatic approach to measurable utility. Econometrica 21(2): 291–297

    Article  Google Scholar 

  28. Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999) Bayesian model averaging: a tutorial. Stat Sci 14(4): 382–401

    Article  Google Scholar 

  29. Hope C (2006) The marginal impact of CO2 from PAGE2002: an integrated assessment model incorporating the IPCC’s five reasons for concern. Integr Assess 6(1):19–56

    Google Scholar 

  30. Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317(5839): 793–796

    Article  Google Scholar 

  31. Ju N, Miao J (2012) Ambiguity, learning, and asset returns. Econometrica 80(2): 559–591

    Article  Google Scholar 

  32. Karp L, Zhang J (2006) Regulation with anticipated learning about environmental damages. J Environ Econ Manag 51(3): 259–279

    Article  Google Scholar 

  33. Keller K, Bolker BM, Bradford DF (2004) Uncertain climate thresholds and optimal economic growth. J Environ Econ Manag 48(1): 723–741

    Article  Google Scholar 

  34. Kelly DL, Kolstad CD (1999) Bayesian learning, growth, and pollution. J Econ Dyn Control 23(4): 491–518

    Article  Google Scholar 

  35. Klibanoff P, Marinacci M, Mukerji S (2005) A smooth model of decision making under ambiguity. Econometrica 73(6): 1849–1892

    Article  Google Scholar 

  36. Klibanoff P, Marinacci M, Mukerji S (2009) Recursive smooth ambiguity preferences. J Econ Theory 144(3): 930–976

    Article  Google Scholar 

  37. Knight F (1921) Risk, uncertainty, and profit. Houghton Mifflin, New York

    Google Scholar 

  38. Knutti R (2010) The end of model democracy?. Clim Change 102(3): 395–404

    Article  Google Scholar 

  39. Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J Clim 23(10): 2739–2758

    Article  Google Scholar 

  40. Kreps DM, Porteus EL (1978) Temporal resolution of uncertainty and dynamic choice theory. Econometrica 46(1): 185–200

    Article  Google Scholar 

  41. Lange A, Treich N (2008) Uncertainty, learning and ambiguity in economic models on climate policy: some classical results and new directions. Clim Change 89(1): 7–21

    Article  Google Scholar 

  42. Lemoine D, Traeger CP (2012) Tipping points and ambiguity in the Economics of climate change. NBER working paper no 18230

  43. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci 105(6): 1786–1793

    Article  Google Scholar 

  44. Maccheroni F, Marinacci M, Rustichini A (2006) Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica 74(6): 1447–1498

    Article  Google Scholar 

  45. Manne A, Richels R (1992) Buying greenhouse insurance: the economic costs of CO2. The MIT Press, Cambridge, MA

    Google Scholar 

  46. McJeon HC, Clarke L, Kyle P, Wise M, Hackbarth A, Bryant BP, Lempert RJ (2011) Technology interactions among low-carbon energy technologies: what can we learn from a large number of scenarios?. Energy Econ 33(4): 619–631

    Article  Google Scholar 

  47. Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2C. Nature 458(7242): 1158–1162

    Article  Google Scholar 

  48. Nordhaus WD (2008) A question of balance. Yale University Press, New Haven, CT

    Google Scholar 

  49. Savage LJ (1954) The foundations of statistics. Wiley, London

    Google Scholar 

  50. Schmeidler D (1989) Subjective probability and expected utility without additivity. Econometrica 57(3): 571–587

    Article  Google Scholar 

  51. Slovic P, Tversky A (1974) Who accepts Savage’s axiom?. Behav Sci 19(6): 368–373

    Article  Google Scholar 

  52. Smith LA (2002) What might we learn from climate forecasts? Proc Natl Acad Sci USA 99(Suppl 1): 2487–2492

    Google Scholar 

  53. Smith LA (2007) Chaos: a very short introduction, vol 159. Oxford University Press, Oxford

    Google Scholar 

  54. Stainforth DA, Allen MR, Tredger ER, Smith LA (2007) Confidence, uncertainty and decision-support relevance in climate predictions. Philos Trans R Soc A Math Phys Eng Sci 365(1857): 2145–2161

    Article  Google Scholar 

  55. Stern N (2008) The economics of climate change. Am Econ Rev 98(2): 1–37

    Article  Google Scholar 

  56. Stern NH (2007) The economics of climate change: the Stern review. Cambridge University Press, Cambridge

    Google Scholar 

  57. Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc A Math Phys Eng Sci 365(1857): 2053–2075

    Article  Google Scholar 

  58. Tol R (1997) On the optimal control of carbon dioxide emissions: an application of FUND. Environ Model Assess 2(3): 151–163

    Article  Google Scholar 

  59. Traeger CP (2009) Recent developments in the intertemporal modeling of uncertainty. Annu Rev Resour Econ 1(1): 261–286

    Article  Google Scholar 

  60. von Neumann J, Morgenstern O (1944) Theory of games and economic behaviour. Princeton University Press, Princeton, NJ

    Google Scholar 

  61. Weitzman ML (1976) On the welfare significance of national product in a dynamic economy. Q J Econ 90(1): 156–162

    Article  Google Scholar 

  62. Weitzman ML (2007) A review of The Stern review on the economics of climate change. J Econ Lit 45(3): 703–724

    Article  Google Scholar 

  63. Weitzman ML (2009) On modeling and interpreting the economics of catastrophic climate change. Rev Econ Stat 91(1): 1–19

    Article  Google Scholar 

  64. Weitzman ML (2012) GHG targets as insurance against catastrophic climate damages, ghg targets as insurance against catastrophic climate damages. J Public Econ Theory 14(2): 221–244

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antony Millner.

Additional information

An earlier version of this paper appeared as NBER Working Paper no. 16050. We thank Martin Weitzman, Christian Traeger, Larry Karp, Cameron Hepburn, seminar participants at Columbia, Harvard, Berkeley, Stanford, AERE, EAERE, and the 12th Occasional California Workshop on Environmental Economics, and two anonymous referees for helpful comments. We are grateful to Malte Meinshausen for supplying us with the empirical estimates of the climate sensitivity distributions.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Millner, A., Dietz, S. & Heal, G. Scientific Ambiguity and Climate Policy. Environ Resource Econ 55, 21–46 (2013). https://doi.org/10.1007/s10640-012-9612-0

Download citation

Keywords

  • Climate change
  • Uncertainty
  • Ambiguity

JEL Classification

  • Q54
  • D81