Environmental and Resource Economics

, Volume 47, Issue 4, pp 477–493 | Cite as

Combining Discrete and Continuous Representations of Preference Heterogeneity: A Latent Class Approach

  • Angel BujosaEmail author
  • Antoni Riera
  • Robert L. Hicks


Unobserved preference heterogeneity has been widely recognized as a critical issue not only for modelling choice behaviour, but also for policy analysis. This paper examines alternative approaches for incorporating heterogeneity in recreational demand. We apply a hybrid model combining discrete and continuous heterogeneity representations of tastes to capture the defining features of both the latent class and the random parameter logit specifications. This model allows for the joint estimation of discrete segments and within segment heterogeneity providing a richer interpretation of preference heterogeneity. A database of recreational trips to forest sites in Mallorca has been used to compare the empirical performance of this hybrid approach with common specifications such as the conditional logit, the random parameter logit, and the latent class model.


Travel cost method Recreation demand Random parameter model Latent class model Forests 



Conditional logit


Random parameter logit


Latent class


Latent class-random parameter logit




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allenby GM, Rossi PE (1998) Marketing models of consumer heterogeneity. J Econom 89(1–2): 57–78CrossRefGoogle Scholar
  2. Allenby GM, Arora N, Ginter JL (1998) On the heterogeneity of demand. J Mark Res 35(3): 384–389CrossRefGoogle Scholar
  3. Andrews RL, Ainslie A, Currim IS (2002) An empirical comparison of logit choice models with discrete versus continuous representations of heterogeneity. J Mark Res 39(4): 479–487CrossRefGoogle Scholar
  4. Armstrong P, Garrido R, Ortzar JdD (2001) Confidence intervals to bound the value of time. Transp Res Part E Logist Transp Rev 37(2–3): 143–161CrossRefGoogle Scholar
  5. Balcombe K, Chalak A, Fraser I (2009) Model selection for the mixed logit with bayesian estimation. J Environ Econ Manage 57(2): 226–237CrossRefGoogle Scholar
  6. Ben-Akiva M, Lerman SR (1985) Discrete choice analysis: theory and application to travel demand. MIT Press series in transportation studies, The MIT Press, CambridgeGoogle Scholar
  7. Bhat CR (1997) An endogenous segmentation mode choice model with an application to intercity travel. Transp Sci 31(1): 34–48CrossRefGoogle Scholar
  8. Bhat CR (1998) Accommodating variations in responsiveness to level-of-service measures in travel mode choice modeling. Transp Res Part A Policy Pract 32(7): 495–507CrossRefGoogle Scholar
  9. Boxall PC, Adamowicz WL (2002) Understanding heterogeneous preferences in random utility models: a latent class approach. Environ Resour Econ 23(4): 421–446CrossRefGoogle Scholar
  10. Bujosa A, Riera A (2009) Estimating the aggregate value of forest recreation in a regional context. J Forest Econ. doi: 10.1016/j.jfe.2009.11.005
  11. Colombo S, Calatrava-Requena J, Hanley N (2007) Testing choice experiment for benefit transfer with preference heterogeneity. Am J Agric Econ 89(1): 135–151CrossRefGoogle Scholar
  12. Dillon W, Kumar A (1994) Latent structure and other mixture models in marketing: an integrative survey and overview. In: Bagozzi RP (eds) Advanced methods in marketing research. Blackwell, CambridgeGoogle Scholar
  13. Englin J, Shonkwiler JS (1995) Modeling recreation demand in the presence of unobservable travel costs: toward a travel price model. J Environ Econ Manag 29(3): 368–377CrossRefGoogle Scholar
  14. Frühwirth-Schnatter S, Tchler R, Otter T (2004) Bayesian analysis of the heterogeneity model. J Bus Econ Stat 22(1): 2–15CrossRefGoogle Scholar
  15. Greene WH, Hensher DA (2003) A latent class model for discrete choice analysis: contrasts with mixed logit. Transp Res Part B Methodol 37(8): 681–698CrossRefGoogle Scholar
  16. Gupta S, Chintagunta PK (1994) On using demographic variables to determine segment membership in logit mixture models. J Mark Res 31(1): 128–136CrossRefGoogle Scholar
  17. Hanemann WM (1982) Applied welfare analysis with qualitative response models. Cudare Working PapersGoogle Scholar
  18. Hanemann WM (1999) Welfare analysis with discrete choice models. In: Herriges JA, Kling CL (eds) Valuing recreation and the environment. Edward, CheltenhamGoogle Scholar
  19. Hensher D, Greene W (2003) The mixed logit model: the state of practice. Transp 30(2): 133–176CrossRefGoogle Scholar
  20. Hurvich CM, Tsai CL (1989) Regression and time series model selection in small samples. Biometrika 76(2): 297–307CrossRefGoogle Scholar
  21. Hynes S, Hanley N, Scarpa R (2008) Effects on welfare measures of alternative means of accounting for preference heterogeneity in recreational demand models. Am J Agric Econ 90(4): 1011–1027CrossRefGoogle Scholar
  22. Lenk P, DeSarbo W (2000) Bayesian inference for finite mixtures of generalized linear models with random effects. Psychometrika 65(1): 93–119CrossRefGoogle Scholar
  23. McFadden D (1974) Conditional logit analysis of qualitative choice behavior. In: Zarembka P (ed) Frontiers in econometrics. Academic Press, New York, pp 105–142Google Scholar
  24. McFadden D, Train KE (2000) Mixed MNL models for discrete response. J Applied Econom 15(5): 447–470CrossRefGoogle Scholar
  25. Meijer E, Rouwendal J (2006) Measuring welfare effects in models with random coefficients. J Appl Econom 21(2): 227–244CrossRefGoogle Scholar
  26. Morey E, Rossmann KG (2003) Using stated-preference questions to investigate variations in willingness to pay for preserving marble monuments: Classic heterogeneity, random parameters, and mixture models. J Cult Econ 27(3): 215–229CrossRefGoogle Scholar
  27. Morey E, Thacher J, Breffle W (2006) Using angler characteristics and attitudinal data to identify environmental preference classes: a latent-class model. Environ Resour Econ 34(1): 91–115CrossRefGoogle Scholar
  28. Olsen SB (2009) Choosing between internet and mail survey modes for choice experiments surveys considering non-market goods. Environ Resour Econ 44(4): 591–610CrossRefGoogle Scholar
  29. Ouma E, Abdulai A, Drucker A (2007) Measuring heterogeneous preferences for cattle traits among cattle-keeping households in East Africa. Am J Agric Econ 89(4): 1005–1019CrossRefGoogle Scholar
  30. Phaneuf DJ, Smith VK (2005) Recreation demand models. In: Mäler KG, Vincent J (eds) Handbook of environmental economics: valuing environmental changes. Elsevier, Amsterdam, pp 671–761Google Scholar
  31. Provencher B, Bishop RC (2004) Does accounting for preference heterogeneity improve the forecasting of a random utility model? A case study. J Environ Econ Manag 48(1): 793–810CrossRefGoogle Scholar
  32. Provencher B, Moore R (2006) A discussion of using angler characteristics and attitudinal data to identify environmental preference classes: a latent-class model. Environ Resour Econ 34(1): 117–124CrossRefGoogle Scholar
  33. Provencher B, Baerenklau KA, Bishop RC (2002) A finite mixture logit model of recreational angling with serially correlated random utility. Am J Agric Econ 84(4): 1066–1075CrossRefGoogle Scholar
  34. Revelt D, Train K (1998) Mixed logit with repeated choices: households choices of appliance efficiency level. Rev Econ Stat 80(4): 647–657CrossRefGoogle Scholar
  35. Ruto E, Garrod G, Scarpa R (2008) Valuing animal genetic resources: a choice modeling application to indigenous cattle in Kenya. Agric Econ 38(1): 89–98CrossRefGoogle Scholar
  36. Scarpa R, Thiene M (2005) Destination choice models for rock climbing in the Northeastern Alps: a latent-class approach based on intensity of preferences. Land Econ 81(3): 426–444Google Scholar
  37. Scarpa R, Thiene M, Tempesta T (2007) Latent class count models of total visitation demand: days out hiking in the Eastern Alps. Environ Resour Econ 38(4): 447–460CrossRefGoogle Scholar
  38. Shonkwiler JS, Shaw WD (2003) A finite mixture approach to analyzing income effects in random utility models: reservoir recreation along the Columbia river. In: Hanley N, Shaw WD, Wright RE (eds) The new economics of outdoor recreation. Edward, CheltenhamGoogle Scholar
  39. Small KA, Rosen HS (1981) Applied welfare economics with discrete choice models. Econom J Econome Soc 49(1): 105–130Google Scholar
  40. Thacher JA, Morey E, Craighead WE (2005) Using patient characteristics and attitudinal data to identify depression treatment preference groups: a latent-class model. Depress Anxiety 21(2): 47–54CrossRefGoogle Scholar
  41. Train KE (1998) Recreation demand models with taste differences over people. Land Econ 74(2): 230–239CrossRefGoogle Scholar
  42. Train KE (1999) Mixed logit models for recreation demand. In: Herriges JA, Kling CL (eds) Valuing recreation and the environment: revealed preference methods in theory and practice, New Horitzons in Environmental Economics. Edward, CheltenhamGoogle Scholar
  43. Train KE (2003) Discrete choice methods with simulation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  44. von Haefen RH (2003) Incorporating observed choice into the construction of welfare measures from random utility models. J Environ Econ Manag 45(2): 145–165CrossRefGoogle Scholar
  45. Wedel M, Kamakura WA (2000) Market segmentation: conceptual methodological foundations. Kluwer, BostonGoogle Scholar
  46. Wedel M, Kamakura W (2002) Introduction to the special issue on market segmentation. Int J Res Mark 19(3): 181–183CrossRefGoogle Scholar
  47. Wedel M, Kamakura W, Arora N, Bemmaor A, Chiang J, Elrod T, Johnson R, Lenk P, Neslin S, Poulsen CS (1999) Discrete and continuous representations of unobserved heterogeneity in choice modeling. Mark Lett 10(3): 219–232CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Centre de Recerca Econòmica (UIB · Sa Nostra)Palma de MallorcaSpain
  2. 2.Department of EconomicsCollege of William and MaryWilliamsburgUSA

Personalised recommendations