Skip to main content
Log in

Model Uncertainty, Ambiguity and the Precautionary Principle: Implications for Biodiversity Management

  • Published:
Environmental and Resource Economics Aims and scope Submit manuscript

Abstract

We analyze ecosystem management under ‘unmeasurable’ Knightian uncertainty or ambiguity which, given the uncertainties characterizing ecosystems, might be a more appropriate framework relative to the classic risk case (measurable uncertainty). This approach is used as a formal way of modelling the precautionary principle in the context of least favorable priors and maxmin criteria. We provide biodiversity management rules which incorporate the precautionary principle. These rules take the form of either safety margins and minimum safety standards or optimal harvesting under precautionary approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arrow K, Cropper M, Eads G, Hahn R, Lave L, Noll R, Portney P, Russel M, Schmalensee R, Kerry Smith V, Stavins R (1996) Benefit-cost analysis in environmental, health and safety. American Enterprise Institute, The Annapolis Center, and Resources for the Future

  • Brock W, Xepapadeas A (2002) Biodiversity management under uncertainty. In: Dasgupta P, Kriström B, Lofgren K-G (eds). Economic theory for the environment: essays in honour of K-G. Mäler, Edward Elgar

  • Brock W, Xepapadeas A (2003) Regulating nonlinear environmental systems under Knightian uncertainty. In: Arnott R, Greenwald B, Kanbur R, Nalebuff B(eds) Economics for an imperfect world: essays in honor of Joseph Stiglitz. MIT Press, Cambridge, MA

    Google Scholar 

  • Chen Z, Epstein L (2002) Ambiguity risk and assets returns in continuous time. Econometrica 70(4): 1403–1443

    Article  Google Scholar 

  • Elsberg D (1961) Risk ambiguity and the savage axioms. Q J Econ 75: 643–669

    Article  Google Scholar 

  • Epstein L, Wang T (1994) Intertemporal asset pricing under Knightian uncertainty. Econometrica 63: 283–322

    Article  Google Scholar 

  • Epstein L, Wang T (1995) Uncertainty, risk-neutral measures and security price booms and crashes. J Econ Theory 67: 40–80

    Article  Google Scholar 

  • Fellner W (1961) Distortion of subjective probabilities as a reaction to uncertainty. Q J Econ 75: 670–689

    Article  Google Scholar 

  • Fleming W (1971) Stochastic control for small noise intensities. SIAM J Control 9(3): 473–517

    Article  Google Scholar 

  • Fleming W, Souganidis P (1989) On the existence of value function of two-player, zero sum stochastic differential games. Indiana Univ Math J 3: 293–314

    Article  Google Scholar 

  • Gilboa I, Schmeidler D (1989) Maxmin expected utility with non-unique prior. J Math Econ 18: 141–153

    Article  Google Scholar 

  • Hansen L, Sargent T (2001) Robust control and model uncertainty. Am Econ Rev 91(3): 60–66

    Article  Google Scholar 

  • Hansen L, Sargent T, Turmuhambetova G, Williams N (2002) Robust control and model uncertainty, Working Paper, University of Chicago

  • Holt A, Tisdell C (1993) How useful are environmental safety standards in economics? The example of safe minimum standard for protection of species. Biodivers Conserv 2: 2

    Article  Google Scholar 

  • Knight F (1921) Risk, uncertainty and profit. Houghton Miffin, USA

    Google Scholar 

  • Magill M (1977) A local analysis of N-sector capital accumulation under uncertainty. J Econ Theory 15: 211–219

    Article  Google Scholar 

  • Marchant G (2003) From general policy to legal rule: aspirations and imitations of the precautionary principle. Environ Health Perspect 111: 1799–1803

    Google Scholar 

  • Millennium Ecosystem Assessment (MEA) (2005a) Ecosystems and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Millennium Ecosystem Assessment (MEA) (2005b) Ecosystems and human well-being: our human planet, summary for decision makers. Island Press, Washington, DC

    Google Scholar 

  • Oksendal B (2000) Stochastic differential equations. Springer–Verlag, Berlin

    Google Scholar 

  • Onatski A, Williams N (2003) Modeling model uncertainty. NBER Working Paper 9566

  • Savage LJ (1954) The foundations of statistics. Wiley, New York

    Google Scholar 

  • Vardas G, Xepapadeas A (2007) Robust control uncertainty aversion and asset holdings with stochastic investment opportunity set. Int J Theo App Finance 10(6): 985–1014

    Article  Google Scholar 

  • Wald A (1950) Statistical decision functions. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Xepapadeas.

Additional information

Authors would like to thank the Greek State Scholarship Foundation and the Marie Curie program of the EU. We would like to thank an anonymous referee for valuable comments on an earlier draft of this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vardas, G., Xepapadeas, A. Model Uncertainty, Ambiguity and the Precautionary Principle: Implications for Biodiversity Management. Environ Resource Econ 45, 379–404 (2010). https://doi.org/10.1007/s10640-009-9319-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10640-009-9319-z

Keywords

JEL Classification

Navigation