Skip to main content

Advertisement

Log in

Optimal compliance with emission constraints: dynamic characteristics and the choice of technique

  • Published:
Environmental and Resource Economics Aims and scope Submit manuscript

Abstract

The paper analyzes how to comply with an emission constraint, which restricts the use of an established energy technique, given the two options to save energy and to invest in two alternative energy techniques. These techniques differ in their deterioration rates and the investment lags of the corresponding capital stocks. Thus, the paper takes a medium-term perspective on climate change mitigation, where the time horizon is too short for technological change to occur, but long enough for capital stocks to accumulate and deteriorate. It is shown that, in general, only one of the two alternative techniques prevails in the stationary state, although, both techniques might be utilized during the transition phase. Hence, while in a static economy only one technique is efficient, this is not necessarily true in a dynamic economy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaheim H (1999). Climate policy with multiple sources and sinks of greenhouse gases. Environ Resour Econ 14: 413–429

    Article  Google Scholar 

  • Aidt TS and Dutta J (2004). Transitional politics: emerging incentive-based instruments in environmental regulation. J Environ Econ Manage 47: 458–479

    Article  Google Scholar 

  • Asea PK and Zak PJ (1999). Time-to-build and cycles. J Econ Dyn Control 23: 1155–1175

    Article  Google Scholar 

  • Baumgärtner S, Schiller J (2001) Vielfalt und Nachhaltigkeit. Der Einfluss von Beständen und des Zeithorizonts auf zukünftige ökonomische Wahlmöglichkeiten. Z Angew. Umweltforschung, Special issue 13/2001:137–148

  • Bellman R and Cooke KL (1963). Differential-difference equations. Academic, New York

    Google Scholar 

  • Bhaduri A (1968). An aspect of project selection: durability vs. construction-period. Econ J 78: 344–348

    Article  Google Scholar 

  • von Böhm-Bawerk E ([1889]1921) Kapital und Kapitalzins. Positive Theorie des Kapitals (Capital and Interest. The Positive Theory of Capital), 4th edn. First published in 1889. Macmillan, London

  • Böhringer C (2003). The Kyoto protocol: a review and perspectives. Oxford Rev Econ Policy 19: 451–466

    Article  Google Scholar 

  • Böhringer C and Vogt C (2003). Economic and environmental impacts of the Kyoto protocol. Can J Econ 36: 475–494

    Article  Google Scholar 

  • Boucekkine R, Licandro O, Puch LA and del Rio F (2005). Vintage capital and the dynamics of the AK model. J Econ Theory 120: 39–72

    Article  Google Scholar 

  • Buonanno P, Carraro C and Galeotti M (2003). Endogenous induced technical change and the costs of Kyoto. Resour Energy Econ 25: 11–34

    Article  Google Scholar 

  • Carraro C, Gerlagh R and van der Zwaan B (2003). Endogenous technical change in environmental maroeconomics. Resour Energy Econ 25: 1–10

    Article  Google Scholar 

  • Chichilnisky G (1996). An axiomatic approach to sustainable development. Soc Choice Welf 13: 231–257

    Article  Google Scholar 

  • Dellink R, Hofkes M, van Ierland E and Verbruggen H (2004). Dynamic modelling of pollution abatement in a CGE framework. Econ Model 21: 965–989

    Article  Google Scholar 

  • Diehl M, Leineweber DB, Schäfer AAS (2001) Muscod-II users’ manual. Preprint 2001-25, Interdisciplinary Center for Scientific Computing, University of Heidelberg, Heidelberg

  • El-Hodiri MA, Loehman E and Whinston A (1972). An optimal growth model with time lags. Econometrica 40: 1137–1146

    Article  Google Scholar 

  • Endres A and Finus M (1999). International environmental agreements: how the policy instrument affects equilibrium emissions. J Inst Theor Econ 155: 527–550

    Google Scholar 

  • Endres A and Finus M (2002). Quotas may beat taxes in a global emission game. Int Tax Public Finance 9: 687–707

    Article  Google Scholar 

  • Faber M (1979). Introduction to modern Austrian capital theory. Springer, Heidelberg

    Google Scholar 

  • Falk I and Mendelsohn R (1993). The economics of controlling stock pollutants: an efficient strategy for greenhouse gases. J Environ Econ Manage 25: 76–88

    Article  Google Scholar 

  • Feichtinger G, Hartl RF, Kort PM and Veliov MV (2006). Anticipation effects of technological progress on capital accumulation: A vintage capital approach. J Econ Theory 126: 143–164

    Article  Google Scholar 

  • Feichtinger G, Novak A and Wirl F (1994). Limit cycles in intertemporal adjustment models: theory and application. J Econ Dyn Control 18: 353–380

    Article  Google Scholar 

  • Fisher C, Parry I and Pizer W (2003). Instrument choice for environmental protection when technological innovation is endogenous. J Environ Econ Manage 45: 523–545

    Article  Google Scholar 

  • Gandolfo G (1996). Economic dynamics, Third, completely revised and enlarged edition. Springer, Berlin

    Google Scholar 

  • Gerlagh R and Lise W (2005). Carbon taxes: a drop in the ocean, or a drop that erodes the stone? The effect of carbon taxes on technological change. Ecol Econ 54: 241–260

    Article  Google Scholar 

  • Gerlagh R and van der Zwaan B (2003). Gross world product and consumption in a global warming model with endogenous technological change. Resour Energy Econ 25: 35–57

    Article  Google Scholar 

  • Gersbach H and Glazer A (1999). Markets and regulatory hold-up problems. J Environ Econ Manage 37: 151–164

    Article  Google Scholar 

  • Gersbach H and Requate T (2004). Emission taxes and optimal refunding schemes. J Public Econ 88: 713–725

    Article  Google Scholar 

  • Gollier C and Treich N (2003). Decision-making under scientific uncertainty: the economics of the Precautionary Principle. J Risk Uncertain 27: 77–103

    Article  Google Scholar 

  • Goulder LH and Mathai K (2000). Optimal CO2 abatement in the presence of induced technological change. J Environ Econ Manage 39: 1–38

    Article  Google Scholar 

  • Goulder LH and Schneider SH (1999). Induced technological change and the attractiveness of CO2 abatement policies. Resour Energy Econ 21: 211–253

    Article  Google Scholar 

  • Hale J (1977). Theory of functional differential equations. Springer, New York

    Google Scholar 

  • Hicks JR (1973). Capital and time: a neo-Austrian theory. Clarendon, Oxford

    Google Scholar 

  • Hoel M and Karp L (2000). Taxes versus quotas for a stock pollutant. Resour Energy Econ 24: 367–384

    Article  Google Scholar 

  • IEA (2005) Projected costs of generating electricity—2005 update. OECD Nuclear Energy Agency (NEA) and International Energy Agency (IEA), Paris

  • Ioannides YM and Taub B (1992). On dynamics with time-to-build investment and non-separable leisure. J Econ Dyn Control 16: 225–241

    Article  Google Scholar 

  • Karp L (2005). Global warming and hyperbolic discounting. J Public Econ 89: 261–282

    Article  Google Scholar 

  • Kolstad CD (1996). Learning and stock effects in environmental regulation: the case of greenhouse gas emissions. J Environ Econ Manage 31: 1–18

    Article  Google Scholar 

  • Kydland FE and Prescott EC (1982). Time to build and aggregate fluctuations. Econometrica 50: 1345–1370

    Article  Google Scholar 

  • Laffont JJ and Tirole J (1996). Pollution permits and compliance strategies. J Public Econ 62: 85–125

    Article  Google Scholar 

  • Lange A (2003). Climate change and the irreversibility effect—combining expected utility and maximin. Environ Resour Econ 25: 417–434

    Article  Google Scholar 

  • Leineweber DB, Bauer I, Bock HG and Schlöder JP (2003). An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization—part I: theoretical aspects. Comput Chem Eng 27: 157–166

    Article  Google Scholar 

  • Li CZ and Löfgren KG (2000). Renewable resources and economic sustainability: a dynamic analysis with heterogenous time preferences. J Environ Econ Manage 40: 236–250

    Article  Google Scholar 

  • Lind RC (ed) (1982). Discounting for time and risk in energy policy. John Hopkins University Press, Baltimore

    Google Scholar 

  • Liski M, Kort PM and Novak A (2001). Increasing returns and cycles in fishing. Resour Energy Econ 23: 241–258

    Article  Google Scholar 

  • Löschel A (2002). Technological change in economic models of environmental policy: a survey. Ecol Econ 43: 105–126

    Article  Google Scholar 

  • Moledina AA, Coggins JS, Polasky S and Costello C (2003). Dynamic environmental policy with strategic firms: prices versus quantities. J Environ Econ Manage 45: 356–376

    Article  Google Scholar 

  • Montero JP (2002). Permits, standards and technology innovation. J Environ Econ Manage 44: 23–44

    Article  Google Scholar 

  • Moslener U, Requate T (forthcoming) Optimal abatement in dynamic multi-pollutant problems when pollutants can be complements or substitutes. J Econ Dyn Control

  • Newell RG, Jaffe AB and Stavins RN (1999). The induced innovation hypothesis and energy-saving technological change. Q J Econ 114: 941–975

    Article  Google Scholar 

  • Newell RG and Pizer WA (2003). Regulating stock externalities under uncertainty. J Environ Econ Manage 45: 416–432

    Article  Google Scholar 

  • Nordhaus WD (2002) Modeling induced innovation in climate-change policy. In Grübler A, Nakicenovic N, Nordhaus WD (eds) Technological change and the environment. Resources for the Future, pp 182–209

  • Nuti DM (1970). Capitalism, socialism and steady growth. Econ J 80: 32–57

    Article  Google Scholar 

  • Pezzey JCV (2003). Emission taxes and tradeable permits: a comparison of views on long-run efficiency. Environ Resour Econ 26: 329–342

    Article  Google Scholar 

  • Phaneuf DJ and Requate T (2002). Incentives for investment in advanced pollution abatement technology in emission permit markets with banking. Environ Resour Econ 22: 369–390

    Article  Google Scholar 

  • Pizer WA (2002). Combining price and quality controls to mitigate global climate change. J Public Econ 85: 409–434

    Article  Google Scholar 

  • Portney PR, Weyant JP (eds) (1999). Discounting and intergenerational equity. Resources for the Future, Washington, DC

    Google Scholar 

  • Requate T (forthcoming) Commitment and timing of environmental policy, adoption of new technology, and repurcussions on R&D. Environ Resour Econ

  • Requate T and Unold W (2003). Environmental policy incentives to adopt advanced abatement technology—will the true ranking please stand up. Eur Econ Rev 47: 125–146

    Article  Google Scholar 

  • Rubio SJ and Casino B (2005). Self-enforcing international environmental agreements with a stock pollutant. Span Econ Rev 7: 89–109

    Article  Google Scholar 

  • Ulph A and Ulph D (1997). Global warming, irreversibility and learning. Econ J 107: 636–649

    Article  Google Scholar 

  • United Nations Third Conference of the Parties of the Framework Convention on Climate Change (1997) Kyoto protocol to the United Nations framework convention on climate change. United Nations

  • Weitzman ML (1998). Why the far distant future should be discounted at its lowest possible rate. J Environ Econ Manage 36: 201–208

    Article  Google Scholar 

  • von Weizsäcker CC (1971). Steady state capital theory. Springer, Berlin

    Google Scholar 

  • Winkler R (2003) Zeitverzögerte Dynamik von Kapital- und Schadstoffbeständen. Eine österreichische Perspective (Time-lagged Dynamics of Capital Stocks and Stocks of Pollutants. An Austrian Perspektive). Metropolis, Marburg

  • Winkler R (2004) Time-lagged accumulation of stock pollutants. Additively separable welfare functions reconsidered. Discussion-Paper No. 408, Alfred Weber-Institute of Economics, University of Heidelberg

  • Winkler R (2005). Structural change with joint production of consumption and environmental pollution: a neo-Austrian approach. Struct Change Econ Dyn 16: 111–135

    Article  Google Scholar 

  • Winkler R, Brand-Pollmann U, Moslener U, Schlöder J (2005) On the transition from instantaneous to time-lagged capital accumulation. The case of Leontief-type production functions. Discussion-Paper No. 05-30, Centre for European Economic Research (ZEW), Mannheim

  • Winkler R, Brandt-Pollmann U, Moslener U, Schlöder JP (2004) Time lags in capital accumulation. In: Ahr D, Fahrion R, Oswald M, Reinelt G (eds) Operations research proceedings. Springer, Heidelberg

  • Wirl F (1995). The cyclical exploitation of renewable resource stocks may be optimal. J Environ Econ Manage 29: 252–261

    Article  Google Scholar 

  • Wirl F (1999). Complex, dynamic environmental policies. Resour Energy Econ 21: 19–41

    Article  Google Scholar 

  • Wirl F (2002). Stability and limit cycles in competitive equilibria subject to adjustment costs and dynamic spillovers. J Econ Dyn Control 26: 375–398

    Article  Google Scholar 

  • Yang Z (2003). Reevaluation and renegotiation of climate change coalitions—a sequential closed-loop game approach. J Econ Dyn Control 27: 1563–1594

    Article  Google Scholar 

  • van der Zwaan BCC, Gerlagh R, Klaassen G and Schrattenholzer L (2002). Endogenous technological change in climate change modelling. Energy Econ 24: 1–19

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Winkler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkler, R. Optimal compliance with emission constraints: dynamic characteristics and the choice of technique. Environ Resource Econ 39, 411–432 (2008). https://doi.org/10.1007/s10640-007-9133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10640-007-9133-4

Keywords

JEL-Classification

Navigation