Education and Information Technologies

, Volume 23, Issue 6, pp 2765–2782 | Cite as

The effect of direct instruction and web quest on learning outcome in computer science education

  • A. Zendler
  • K. Klein


Answers to the questions of which instructional methods are suitable for school and should be applied in teaching individual subjects and also how instructional methods support the act of learning represent challenges to general education and education in individual subjects. This study focuses on the empirical examination of learning outcome with respect to two instructional methods: direct instruction and web quest. An SPF-2 × 2•2 design is used to control instructional method, time and class context. Learning outcome on QR code is assessed with reference to multiple-choice test items. The empirical findings show that learning with direct instruction performs better than web quest.


Computer science education Instructional methods Direct instruction Web quest Experimental study Learning outcome 


  1. Abell, S. K., & Lederman, N. G. (2007). Handbook of research on science education. New York: Lawrence Erlbaum.Google Scholar
  2. ACM. Association for Computing Machinery. (2013). Computer science curriculum 2013. New York: ACM.Google Scholar
  3. Adams, G. L., & Engelmann, S. (1996). Research on direct instruction: 20 years beyond DISTAR. Seattle: Educational Achievement Systems.Google Scholar
  4. Alias, N., Siraj, S., Nazri, M., Rahman, A., Ujang, A., Gelamdin, R. B., & Said, A. M. (2013). Research and trends in the studies of WebQuest from 2005 to 2012: A content analysis of publications in selected journals. Procedia - Social and Behavioral Sciences, 103, 763–772.CrossRefGoogle Scholar
  5. Author. (2011). Marrying content and process in computer science education. IEEE Transactions on Education, 54(3), 387–397.CrossRefGoogle Scholar
  6. Author. (2015a). Booklet I: Instructional methods to computer science education. Berlin: epubli.Google Scholar
  7. Author. (2015b). Instructional methods to computer science education as investigated by computer science teachers. Journal of Computer Science, 11(8), 915–927.CrossRefGoogle Scholar
  8. Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models. London: Sage.Google Scholar
  9. Case, S. M., & Swanson, D. B. (1998). Construction written test questions for the basic and clinical sciences. Philadelphia: National Board of Medical Examines.Google Scholar
  10. Conover, W. J., & Iman, R. L. (1981). Rank transformations as a bridge between parametric and nonparametric statistics. The American Statistician, 35(3), 124–129.zbMATHGoogle Scholar
  11. Davis, G. B. (2009). Tools for teaching. San Francisco: Jossey-Bass.Google Scholar
  12. Dodge, B. (2018). WebQuest.Org: Welcome. What is a WebQuest. Retrieved January 2, 2018 from
  13. Fisher, T. A., & Tarver, S. G. (1997). Meta-analysis of studies of mathematics curricula designed around big ideas. Effective School Practices, 16, 71–79.Google Scholar
  14. Foundata (2018). QR code generator. Retrieved January 2, 2018, from
  15. GI (2018). Bildungsstandards Informatik SI und SII. Retrieved January 2, 2018 from
  16. Ginnis, P. (2001). The teacher's toolkit. Classroom achievement. Carmarthen: Crown House Publishing.Google Scholar
  17. Goldstein, H. (2010). Multilevel statistical models. New York: Wiley.CrossRefGoogle Scholar
  18. Gugel, G. (2011). 2000 Methoden für Schule und Lehrebildung. Beltz: Weinheim.Google Scholar
  19. Haladyna, T. M. (2004). Developing and validating multiple-choice test items. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  20. Hattie, J. (2009). Visible learning. New York: Routledge.Google Scholar
  21. Huber, S. G., & Hader-Popp, S. (2007). Unterrichtsentwicklung durch Methodenvielfalt im Unterricht fördern: das Methodenatelier als schulinterne Fortbildung. In A. Bartz,. J. Fabian, S.G. Huber, Kloft, C. H. Rosenbusch, & H. Sassenscheidt (Eds.), PraxisWissen Schulleitung (30.31). München: Wolters Kluwer. Google Scholar
  22. Kirk, R. E. (2012). Experimental design: Procedures for the behavioral sciences (4th ed.). Los Angeles: Sage.zbMATHGoogle Scholar
  23. Kiryakova, G., & Angelova, N. (2017). QR codes in the business world. Saarbrücken: Lambert.Google Scholar
  24. Mueller, K. E., & Barton, C. N. (1989). Approximate power for repeated-measures ANOVA lacking sphericity. Journal of the American Statistical Association, 84(406), 549–555.MathSciNetCrossRefGoogle Scholar
  25. Mueller, K. E., LaVange, L. E., Ramey, S. L., & Ramey, C. T. (1992). Power calculations for general linear multivariate models including repeated measures applications. Journal of the American Statistical Association, 87(420), 1209–1226.CrossRefGoogle Scholar
  26. NCSS (2018). PASS 15. Retrieved January 2, 2018 from
  27. Olson, T. M., & Wisher, R. A. (2002). The effectiveness of web-based instruction: An initial inquiry. The International Review of Research in Open and Distributed Learning, 3(2).Google Scholar
  28. Petty, G. (2009). Teaching today: A practical guide. Cheltenham: Nelson Thornes.Google Scholar
  29. Sawilowsky, S. S., Blair, R. C., & Higgins, J. J. (1989). An investigation of the type I error and power properties of the rank transform procedure in factorial ANOVA. Journal of Educational Statistics, 14(3), 255–267.CrossRefGoogle Scholar
  30. The Center for Teaching and Learning (2018). 150 teaching methods. Retrieved January 2, 2018 from
  31. Weber, S. (2013). QR Codes. Retrieved January 2, 2018 from
  32. Wiechmann, J., & Wildhirt, S. (Eds.). (2015). Zwölf Unterrichtsmethoden. Basel: Weinheim.Google Scholar
  33. Winer, B. J., Brown, D. R., & Michels, K. M. (1991). Statistical principles in experimental design. Boston: McGraw-Hill.Google Scholar
  34. Winter, M. (2011). Scan me – Everybody’s guide to the magical world of Qr codes. New York: Westsong Publishing.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Padagogische Hochschule LudwigsburgLudwigsburgGermany

Personalised recommendations