Education and Information Technologies

, Volume 22, Issue 3, pp 917–937 | Cite as

Beyond engagement analytics: which online mixed-data factors predict student learning outcomes?

  • Kenneth David StrangEmail author


This mixed-method study focuses on online learning analytics, a research area of importance. Several important student attributes and their online activities are examined to identify what seems to work best to predict higher grades. The purpose is to explore the relationships between student grade and key learning engagement factors using a large sample from an online undergraduate business course at an accredited American university (n = 228). Recent studies have discounted the ability to predict student learning outcomes from big data analytics but a few significant indicators have been found by some researchers. Current studies tend to use quantitative factors in learning analytics to forecast outcomes. This study extends that work by testing the common quantitative predictors of learning outcome, but qualitative data is also examined to triangulate the evidence. Pre and post testing of information technology understanding is done at the beginning of the course. First quantitative data is collected, and depending on the hypothesis test results, qualitative data is collected and analyzed with text analytics to uncover patterns. Moodle engagement analytics indicators are tested as predictors in the model. Data is also taken from the Moodle system logs. Qualitative data is collected from student reflection essays. The result was a significant General Linear Model with four online interaction predictors that captured 77.5 % of grade variance in an undergraduate business course.


ICT in higher education Moodle engagement analytics Big data analytics Online undergraduate business course Student learning performance Grades 


  1. Agudo-Peregrina, Ã. F., Iglesias-Pradas, S., Conde-Gonzalez, M. Ã., & Hernandez-Garcia, Ã. (2014). Can we predict success from log data in vles? Classification of interactions for learning analytics and their relation with performance in vle-supported f2f and online learning. Computers in Human Behavior, 31(1), 542–550.CrossRefGoogle Scholar
  2. Beattie, S., Woodley, C., & Souter, K. (2014). Creepy analytics and learner data rights. In B. Hegarty, J. McDonald & S.-K. Loke (Eds.), Rhetoric and reality: Critical perspectives on educational techology - conference proceedings (pp. 422–425). Dunedin, NZ: ASCILITE.Google Scholar
  3. Carlson, W. L., Thorne, B., & Krehbiel, T. C. (2004). Statistical business and economics. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
  4. Chatti, M. A., Dyckhoff, A. L., Schroeder, U., & Thüs, H. (2012). A reference model for learning analytics. International Journal of Technology Enhanced Learning, 4(5/6), 310–331.CrossRefGoogle Scholar
  5. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Lawrence Erlbaum AssociatesGoogle Scholar
  6. Dougiamas, M., & Taylor, P. C. (2003). Moodle: Using learning communities to create an open source course management system. Paper presented at the Proceedings of the EDMEDIA 2003. In Conference. HA: Honolulu.Google Scholar
  7. Fidalgo-Blanco, Ã., Sein-Echaluce, M. L., Garcia-Peealvo, F. J., & Conde, M. Ã. (2015). Using learning analytics to improve teamwork assessment. Computers in Human Behavior, 47(2), 149–156.CrossRefGoogle Scholar
  8. Gomez-Aguilar, D. A., Hernandez-Garcia, Ã., Garcia-Pealvo, F. J., & Theren, R. (2015). Tap into visual analysis of customization of grouping of activities in elearning. Computers in Human Behavior, 47(2), 60–67.CrossRefGoogle Scholar
  9. Gunn, C. (2014). Defining an agenda for learning analytics. In B. Hegarty, J. McDonald, & S.-K. Loke (Eds.), Rhetoric and reality: critical perspectives on educational techology - conference proceedings (pp. 638–637). Dunedin, NZ: ASCILITE.Google Scholar
  10. Iglesias-Pradas, S., Ruiz-de-Azcarate, C., & Agudo-Peregrina, Ã. F. (2015). Assessing the suitability of student interactions from Moodle data logs as predictors of cross-curricular competencies. Computers in Human Behavior, 47(2), 81–89.CrossRefGoogle Scholar
  11. Nersesian, R., & Strang, K. D. (2013). Risk planning with discrete distribution analysis applied to petroleum spills. International Journal of Risk and Contingency Management, 2(4), 61–78.CrossRefGoogle Scholar
  12. Nieto-Acevedo, Y., Vanessa, M. M., & Enrique, C. (2015). Towards a decision support system based on learning analytics. Advances in Information Sciences & Service Sciences, 7(1), 1–12.Google Scholar
  13. Reyes, J. (2015). The skinny on big data in education: learning analytics simplified. TechTrends: Linking Research & Practice to Improve Learning, 59(2), 75–80.CrossRefGoogle Scholar
  14. Ruiparez-Valiente, J. A., Mua-Merino, P. J., Leony, D., & Delgado Kloos, C. (2015). Alas-ka: a learning analytics extension for better understanding the learning process in the khan academy platform. Computers in Human Behavior, 47(2), 139–148.CrossRefGoogle Scholar
  15. Scheffel, M., Drachsler, H., Stoyanov, S., & Specht, M. (2014). Quality indicators for learning analytics. Journal of Educational Technology & Society, 17(4), 117–132.Google Scholar
  16. Shum, S. B. (2012). Learning analytics [policy brief]. Moscow, RU: united nations educational, Scientific and Cultural Organization (UNESCO) Instittute for Information Technologies in Education. Retrieved from
  17. Snee, R. D. (1973). Some aspects of nonorthogonal data analysis, part 1. Developing prediction equations. Journal of Quality Technology, 5(1), 67–79.Google Scholar
  18. Strang, K. D. (2012). Applied financial nonlinear programming models for decision making. International Journal of Applied Decision Sciences, 5(4), 370–395. Retrieved from
  19. Strang, K. D. (2015). Selecting Research techniques for a Method and Strategy. In K. D. Strang (Ed.), Palgrave Handbook of Research Design in Business and Management (ch. 5, pp. 63–80). New York: Palgrave Macmillan. ISBN: 978–1137379924.Google Scholar
  20. Strang, K. D., & Sun, Z. (2015). Analyzing relationships in terrorism big data using Hadoop and statistics. The Journal of Computer Information Systems, 55(4), 55–72. Retrieved from
  21. Sun, Z., Strang, K. D., & Yearwood, J. (2014). Analytics service oriented architecture for enterprise information systems. In I. Khalil & A. M. Tjoa (Eds.), ACM International Proceedings of 8th International Conference on Research and Practical Issues of Enterprise Information Systems (CONFENIS 2014) (Vol. 1, pp. 10–19). Hanoi, Vietnam: IFIP TC8 Working Group 8.9. ISBN: 978–1-4503-3001-5. Retrieved from
  22. Tamhane, A. C., & Dunlop, D. D. (2000). Statistics and data analysis from elementary to intermediate. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
  23. Vajjhala, N. R., Strang, K. D., & Sun, Z. (2015). Statistical modeling and visualizing of open big data using a terrorism case study. Paper presented at the Open Big Data Conference, Rome, Italy. Retrieved from
  24. Xing, W., Guo, R., Petakovic, E., & Goggins, S. (2015). Participation-based student final performance prediction model through interpretable genetic programming: integrating learning analytics, educational data mining and theory. Computers in Human Behavior, 47(2), 168–181.CrossRefGoogle Scholar
  25. Yahya, A.-A., Messoussi, R., & Touahni, R. (2015). Analytical tools for visualisation of interactions in online e-learning activities on lms and semantic similarity measures on text. Journal of Theoretical & Applied Information Technology, 73(1), 102–118.Google Scholar
  26. Zacharis, N. Z. (2015). A multivariate approach to predicting student outcomes in web-enabled blended learning courses. The Internet and Higher Education, 27(1), 44–53.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Business and Economics, PlattsburghState University of New YorkQueensburyUSA

Personalised recommendations