Skip to main content

Advertisement

Log in

In vitro results with minimal blood toxicity of a combretastatin A4 analogue

  • Research
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Abstract

Cancer is a disease caused by uncontrolled cell growth that is responsible for several deaths worldwide. Breast cancer is the most common type of cancer among women and is the leading cause of death. Chemotherapy is the most commonly used treatment for cancer; however, it often causes various side effects in patients. In this study, we evaluate the antineoplastic activity of a parent compound based on a combretastatin A4 analogue. We test the compound at 0.01 mg mL− 1, 0.1 mg mL− 1, 1.0 mg mL− 1, 10.0 mg mL− 1, 100.0 mg mL− 1, and 1,000.0 mg mL− 1. To assess molecular antineoplastic activity, we conduct in vitro tests to determine the viability of Ehrlich cells and the blood mononuclear fraction. We also analyze the cytotoxic behavior of the compound in the blood and blood smear. The results show that the molecule has a promising antineoplastic effect and crucial anticarcinogenic action. The toxicity of blood cells does not show statistically significant changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics, 2023. CA: A Cancer. J Clin 73:17–48. https://doi.org/10.3322/caac.21763

    Article  Google Scholar 

  2. Cancer - PAHO/WHO| Pan American Health Organization https://www.paho.org/en/topics/cancer. Accessed 27 Dec 2023

  3. Cancer https://www.who.int/health-topics/cancer. Accessed 27 Dec 2023

  4. Santos MDO, Lima FCDSD, Martins LFL et al (2023) Estimativa De Incidência De Câncer no Brasil, 2023–2025. https://doi.org/10.32635/2176-9745.RBC.2023v69n1.3700. Rev Bras Cancerol 69:

  5. Wendt C, Margolin S (2019) Identifying breast cancer susceptibility genes - a review of the genetic background in familial breast cancer. Acta Oncol 58:135–146. https://doi.org/10.1080/0284186x.2018.1529428

    Article  CAS  PubMed  Google Scholar 

  6. PDQ Adult Treatment Editorial Board (2002) Breast Cancer Treatment (PDQ®): Health Professional Version. PDQ Cancer Information Summaries. National Cancer Institute (US). Bethesda (MD)

  7. Debela DT, Muzazu SG, Heraro KD et al (2021) New approaches and procedures for cancer treatment: current perspectives. SAGE Open Med 9:20503121211034366. https://doi.org/10.1177/20503121211034366

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pantziarka P, Capistrano IR, De Potter A et al (2021) An Open Access Database of Licensed Cancer drugs. Front Pharmacol 12:627574. https://doi.org/10.3389/fphar.2021.627574

    Article  PubMed  PubMed Central  Google Scholar 

  9. Anticancerfund (ed) (2021) https://www.anticancerfund.org/en/cancerdrugs-db. Accessed 27 Dec 2023

  10. Chow LWC, Biganzoli L, Leo AD et al (2017) Toxicity profile differences of adjuvant docetaxel/cyclophosphamide (TC) between Asian and caucasian breast cancer patients. Asia Pac J Clin Oncol 13:372–378. https://doi.org/10.1111/ajco.12682

    Article  CAS  PubMed  Google Scholar 

  11. Kim S, Kang SI, Kim S, Kim JH (2021) Prognostic implications of Chemotherapy-Induced Neutropenia in Stage III Colorectal Cancer. J Surg Res 267:391–396. https://doi.org/10.1016/j.jss.2021.05.002

    Article  PubMed  Google Scholar 

  12. Tao G, Huang J, Moorthy B et al (2020) Potential role of drug metabolizing enzymes in chemotherapy-induced gastrointestinal toxicity and hepatotoxicity. Expert Opin Drug Metab Toxicol 16:1109–1124. https://doi.org/10.1080/17425255.2020.1815705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Akbarali HI, Muchhala KH, Jessup DK, Cheatham S (2022) Chemotherapy induced gastrointestinal toxicities. Adv Cancer Res 155:131–166. https://doi.org/10.1016/bs.acr.2022.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. da Silva EB, Chagas CS, Oliveira MPA et al (2019) Comparative study on myelotoxic and antineoplastic action of Synadenium umbellatum, Vitis vinifera and Resveratrol. J Nat Remedies 80–86. https://doi.org/10.18311/jnr/2019/23383

  15. Safwat MA, Kandil BA, Elblbesy MA et al (2020) Epigallocatechin-3-gallate-loaded Gold nanoparticles: Preparation and evaluation of Anticancer Efficacy in Ehrlich Tumor-Bearing mice. Pharmaceuticals (Basel) 13:254. https://doi.org/10.3390/ph13090254

    Article  CAS  PubMed  Google Scholar 

  16. Brito WAS, Freund E, Nascimento TDH do, et al (2021) The Anticancer efficacy of plasma-oxidized saline (POS) in the Ehrlich Ascites Carcinoma Model in Vitro and in vivo. Biomedicines 9:932. https://doi.org/10.3390/biomedicines9080932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fernandes PD, Guerra FS, Sales NM et al (2015) Characterization of the inflammatory response during Ehrlich ascitic tumor development. J Pharmacol Toxicol Methods 71:83–89. https://doi.org/10.1016/j.vascn.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  18. Ozaslan M, Karagoz ID, Kilic IH, Guldur ME (2011) Ehrlich ascites carcinoma. Afr J Biotechnol 10:2375–2378. https://doi.org/10.4314/ajb.v10i13

    Article  Google Scholar 

  19. Nik ME, Momtazi-Borojeni AA, Zamani P et al (2019) Targeted-nanoliposomal combretastatin A4 (CA-4) as an efficient antivascular candidate in the metastatic cancer treatment. J Cell Physiol 234:14721–14733. https://doi.org/10.1002/jcp.28230

    Article  CAS  PubMed  Google Scholar 

  20. Paidakula S, Nerella S, Kankala S, Kankala RK (2022) Recent trends in tubulin-binding combretastatin A-4 analogs for Anticancer Drug Development. Curr Med Chem 29:3748–3773. https://doi.org/10.2174/0929867328666211202101641

    Article  CAS  PubMed  Google Scholar 

  21. Chen Z-H, Xu R-M, Zheng G-H et al (2023) Development of Combretastatin A-4 Analogues as potential Anticancer agents with Improved Aqueous solubility. Molecules 28:1717. https://doi.org/10.3390/molecules28041717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. de Figueiredo LP, Ibiapino AL, Amaral DN, do et al (2017) Structural characterization and cytotoxicity studies of different forms of a combretastatin A4 analogue. J Mol Struct 1147:226–234. https://doi.org/10.1016/j.molstruc.2017.06.093

    Article  CAS  Google Scholar 

  23. do Amaral DN, Cavalcanti BC, Bezerra DP et al (2014) Docking, synthesis and antiproliferative activity of N-Acylhydrazone derivatives designed as Combretastatin A4 analogues. PLoS ONE 9:e85380. https://doi.org/10.1371/journal.pone.0085380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Silva JC, Júnior RG, de O, Silva MG e, et al (2018) LASSBio-1586, an N-acylhydrazone derivative, attenuates nociceptive behavior and the inflammatory response in mice. PLoS ONE 13:e0199009. https://doi.org/10.1371/journal.pone.0199009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Karatoprak GŞ, Küpeli Akkol E, Genç Y et al (2020) Combretastatins: an overview of structure, probable mechanisms of action and potential applications. Molecules 25:2560. https://doi.org/10.3390/molecules25112560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sherbet GV (2020) Combretastatin analogues in cancer biology: a prospective view. J Cell Biochem 121:2127–2138. https://doi.org/10.1002/jcb.29342

    Article  CAS  PubMed  Google Scholar 

  27. Shahrasbi A, Armin A, Ardebili A et al (2017) Hematologic adverse effects following systemic chemotherapy. 2:1–3. https://doi.org/10.4172/2576-3857.1000110

  28. de Oliveira Gozzo T, Nascimento TG, do, Panobianco MS, de Almeida AM (2011) Ocurrencia de neutropenia en mujeres con cáncer de mama durante El Tratamiento quimioterápico. Acta Paulista De Enfermagem 24:810–814. https://doi.org/10.1590/s0103-21002011000600014

    Article  Google Scholar 

  29. Niraj J, Färkkilä A, D’Andrea AD (2019) The Fanconi Anemia Pathway in Cancer. Annu Rev Cancer Biol 3:457–478. https://doi.org/10.1146/annurev-cancerbio-030617-050422

    Article  PubMed  Google Scholar 

  30. Gilreath JA, Rodgers GM (2020) How I treat cancer-associated anemia. Blood 136:801–813. https://doi.org/10.1182/blood.2019004017

    Article  PubMed  Google Scholar 

  31. Abiri B, Vafa M (2020) Iron Deficiency and Anemia in Cancer patients: the role of Iron Treatment in Anemic Cancer patients. Nutr Cancer 72:864–872. https://doi.org/10.1080/01635581.2019.1658794

    Article  CAS  PubMed  Google Scholar 

  32. Wang Y-J, Fletcher R, Yu J, Zhang L (2018) Immunogenic effects of chemotherapy-induced tumor cell death. Genes Dis 5:194–203. https://doi.org/10.1016/j.gendis.2018.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shrivastava S, Swati Shrivastava, Singh N et al (2016) Comparative study of hematological parameters along with effect of chemotherapy and radiotherapy in different stages of breast cancer. Int J Res Med Sci 5:311–315. https://doi.org/10.18203/2320-6012.ijrms20164569

    Article  Google Scholar 

  34. Coiffier B, Guastalla J-P, Pujade-Lauraine E et al (2001) Predicting cancer-associated anaemia in patients receiving non-platinum chemotherapy: results of a retrospective survey. Eur J Cancer 37:1617–1623. https://doi.org/10.1016/s0959-8049(01)00169-1

    Article  CAS  PubMed  Google Scholar 

  35. Shitara K, Matsuo K, Oze I et al (2011) Meta-analysis of neutropenia or leukopenia as a prognostic factor in patients with malignant disease undergoing chemotherapy. Cancer Chemother Pharmacol 68:301–307. https://doi.org/10.1007/s00280-010-1487-6

    Article  CAS  PubMed  Google Scholar 

  36. Jinna S, Khandhar PB (2023) Thrombocytopenia. In: StatPearls. StatPearls Publishing, Treasure Island (FL)

    Google Scholar 

  37. Kuter DJ (2022) Treatment of chemotherapy-induced thrombocytopenia in patients with non-hematologic malignancies. Haematologica 107:1243–1263. https://doi.org/10.3324/haematol.2021.279512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brasileiro LDA, Oliveira JMD, Castilho SRD (2021) Incidência E manejo da neutropenia em pacientes submetidas Ao Protocolo AC-T no tratamento adjuvante de câncer de mama. RSD 10:e48310616023. https://doi.org/10.33448/rsd-v10i6.16018

    Article  Google Scholar 

  39. Schirrmacher V (2019) From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (review). Int J Oncol 54:407–419. https://doi.org/10.3892/ijo.2018.4661

    Article  CAS  PubMed  Google Scholar 

  40. Barbosa G, Gelves LGV, Costa CMX et al (2022) Discovery of putative dual inhibitor of tubulin and EGFR by phenotypic Approach on LASSBio-1586 homologs. Pharmaceuticals (Basel) 15:913. https://doi.org/10.3390/ph15080913

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Biotério of Centro Universitário Saúde ABC for providing the cell line from the Ehrlich ascites tumor used in this study.

Funding

This work was supported by the Brazilian National Council for Scientific and Technological Development (CNPq grant numbers 465249/2014-0, 306827/2023-9), the São Paulo Research Foundation (FAPESP grant numbers 2023/01502-1, 2018/12219-0), FAPERJ (grant number E-26/010.000090/2018), and the Coordination for the Improvement of Higher Education Personnel - finance code 001.

Author information

Authors and Affiliations

Authors

Contributions

Camila Chagas: Conceptualization, Formal analysis, Investigation, Methodology, Writing– original draft, Writing– review & editing. Jaqueline Vital Mansano: Formal analysis, Investigation, Methodology. Emerson Barbosa da Silva: Formal analysis, Investigation, Methodology, Writing– original draft. Giuliana Petri: Investigation, Methodology, Writing– original draft. Beatriz da Costa Aguiar Alves Reis: Writing– original draft. Maria Lúcia Schumacher: Writing– original draft. Paula Silvia Haddad: Formal analysis, Investigation, Writing– original draft. Edimar Cristiano Pereira: Formal analysis, Investigation, Writing– original draft. Tatiane Nassar Britos: Writing– original draft. Eliezer J. Barreiro: Resources. Lídia Moreira Lima: Resources. Fabio Furlan Ferreira: Resources, Software, Project administration, Writing– review & editing. Fernando Luiz Affonso Fonseca: Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Writing– original draft, Writing - review & editing, Project administration, Resources.

Corresponding authors

Correspondence to Camila Chagas or Fabio Furlan Ferreira.

Ethics declarations

Ethics approval

This work was registered and approved (# 12/2018) by the Commission on Ethics in the Use of Animals (CEUA-FMABC).

Informed consent

Not applicable.

Conflict of interest

The authors declare no conflict of interest.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chagas, C., Mansano, J.V., da Silva, E.B. et al. In vitro results with minimal blood toxicity of a combretastatin A4 analogue. Invest New Drugs (2024). https://doi.org/10.1007/s10637-024-01440-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10637-024-01440-4

Keywords

Navigation