Skip to main content

Advertisement

Log in

A novel anticancer quinolone, (R)-WAC-224, has anti-leukemia activities against acute myeloid leukemia

  • Research
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Approximately 60%–80% of patients who achieve complete remission eventually relapse after conventional chemotherapy and have poor prognoses despite the recent advances of novel anticancer agents. Continuing development of more effective novel treatments for acute myeloid leukemia (AML) is necessary. We developed (R)-WAC-224 (R-WAC), which is an anticancer quinolone, targeting topoisomerase II. This study evaluated the anti-leukemia potential of R-WAC or racemic WAC-224 (WAC) in vitro and in vivo. R-WAC significantly inhibited the human AML cell line proliferation (MV4-11, HL60, and KG1a), which was comparable to daunorubicin and cytarabine, not affected by P-glycoprotein overexpression. WAC did neither increase serum troponin-T nor decrease the crypt numbers in the small intestine, indicating WAC was less toxic than doxorubicin. R-WAC monotherapy demonstrated prolonged survival in the AML mice model and inhibited tumor growth in the MV4-11 xenograft mice model. Moreover, the combination of R-WAC and cytarabine demonstrated more active anti-leukemia effects than daunorubicin and cytarabine. Finally, R-WAC inhibited the colony-forming abilities using primary AML cells. These results indicate that R-WAC is a promising therapeutic agent for AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All can be assessed by contacting the corresponding author (H.U.) and last author (T.Ichinohe).

References

  1. Short NJ, Rytting ME, Cortes JE (2018) Acute myeloid leukaemia. Lancet 392:593–606

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ohtake S, Miyawaki S, Fujita H, Kiyoi H, Shinagawa K, Usui N et al (2011) Randomized study of induction therapy comparing standard-dose idarubicin with high-dose daunorubicin in adult patients with previously untreated acute myeloid leukemia: The JALSGAML201 study. Blood 117:2358–2365

    Article  CAS  PubMed  Google Scholar 

  3. DiNardo CD, Erba HP, Freeman SD, Wei AH (2023) Acute myeloid leukaemia. Lancet 401:2073–2086

    Article  CAS  PubMed  Google Scholar 

  4. Dombret H, Gardin C (2016) An update of current treatments for adult acute myeloid leukemia. Blood 127:53–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lancet JE, Uy GL, Cortes JE, Newell LF, Lin TL, Ritchie EK et al (2018) CPX-351 (cytarabine and daunorubicin) Liposome for Injection Versus Conventional Cytarabine Plus Daunorubicin in Older Patients With Newly Diagnosed Secondary Acute Myeloid Leukemia. J Clin Oncol 36:2684–2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH et al (2020) Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N Engl J Med 383:617–629

    Article  CAS  PubMed  Google Scholar 

  7. DiNardo CD, Tiong IS, Quaglieri A, MacRaild S, Loghavi S, Brown FC et al (2020) Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML. Blood 135:791–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maiti A, Rausch CR, Cortes JE, Pemmaraju N, Daver NG, Ravandi F et al (2021) Outcomes of relapsed or refractory acute myeloid leukemia after front-line hypomethylating agent and venetoclax regimens. Haematologica 106:894–898

    Article  PubMed  Google Scholar 

  9. Matthews AH, Perl AE, Luger SM, Loren AW, Gill SI, Porter DL et al (2022) Real-world effectiveness of CPX-351 vs venetoclax and azacitidine in acute myeloid leukemia. Blood Adv 6:3997–4005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nitiss JL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9:338–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ravandi F, Ritchie EK, Sayar H, Lancet JE, Craig MD, Vey N et al (2015) Vosaroxin plus cytarabine versus placebo plus cytarabine in patients with first relapsed or refractory acute myeloid leukaemia (VALOR): A randomised, controlled, double-blind, multinational, phase 3 study. Lancet Oncol 16:1025–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hawtin RE, Stockett DE, Byl JAW, McDowell RS, Tan N, Arkin MR et al (2010) Voreloxin is an anticancer quinolone derivative that intercalates DNA and poisons topoisomerase II. PLoS ONE 5:1–10

    Article  Google Scholar 

  13. Kazamori D, Aoi H, Sugimoto K, Ueshima T, Amano H, Itoh K et al (2014) In vitro activity of WQ-3810, a novel fluoroquinolone, against multidrug-resistant and fluoroquinolone-resistant pathogens. Int J Antimicrob Agents 44:443–449

    Article  CAS  PubMed  Google Scholar 

  14. Itoh K, Kuramoto Y, Amano H, Kazamori D, Yazaki A (2015) Discovery of WQ-3810: Design, synthesis, and evaluation of 7-(3-alkylaminoazetidin-1-yl)fluoro-quinolones as orally active antibacterial agents. Eur J Med Chem 103:354–360

    Article  CAS  PubMed  Google Scholar 

  15. Hirano T, Kinoshita T, Kazamori D, Inoue S, Nishimura K, Sakurai A et al (2018) Discovery of a Novel Fluoroquinolone Antibiotic Candidate WFQ-228 with Potent Antimicrobial Activity and the Potential to Overcome Major Drug Resistance. Chem Pharm Bull (Tokyo) 66:235–238

    Article  CAS  PubMed  Google Scholar 

  16. Giuliani F, Casazza AM, Di Marco A, Savi G (1981) Studies in mice treated with ICRF-159 combined with daunorubicin or doxorubicin. Cancer Treat Rep 65

  17. Mirzaei S, Gholami MH, Hashemi F, Zabolian A, Farahani MV, Hushmandi K et al (2022) Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects. Drug Discov Today 27:436–455

    Article  CAS  PubMed  Google Scholar 

  18. Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF et al (2012) Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 18:1639–1642

    Article  PubMed  Google Scholar 

  19. Jamieson GC, Fox JA, Poi M, Strickland SA (2016) Molecular and Pharmacologic Properties of the Anticancer Quinolone Derivative Vosaroxin: A New Therapeutic Agent for Acute Myeloid Leukemia. Drugs 76:1245–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Poulsen KL, Olivero-Verbel J, Beggs KM, Ganey PE, Roth RA (2014) Trovafloxacin enhances lipopolysaccharide-stimulated production of tumor necrosis factor-α by macrophages: role of the DNA damage response. J Pharmacol Exp Ther 350:164–170

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kullenberg F, Peters K, Luna-Marco C, Salomonsson A, Kopsida M, Degerstedt O et al (2023) The progression of doxorubicin-induced intestinal mucositis in rats. Naunyn Schmiedebergs Arch Pharmacol 396:247–260

    Article  CAS  PubMed  Google Scholar 

  22. Hills RK, Castaigne S, Appelbaum FR, Delaunay J, Petersdorf S, Othus M et al (2014) Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol 15:986–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD et al (2017) Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N Engl J Med 377:454–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Erba HP, Montesinos P, Kim H-J, Patkowska E, Vrhovac R, Žák P et al (2023) Quizartinib plus chemotherapy in newly diagnosed patients with FLT3-internal-tandem-duplication-positive acute myeloid leukaemia (QuANTUM-First): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 401:1571–1583

    Article  CAS  PubMed  Google Scholar 

  25. Wei AH, Döhner H, Pocock C, Montesinos P, Afanasyev B, Dombret H et al (2020) Oral Azacitidine Maintenance Therapy for Acute Myeloid Leukemia in First Remission. N Engl J Med 383:2526–2537

    Article  CAS  PubMed  Google Scholar 

  26. Kim N, Norsworthy KJ, Subramaniam S, Chen H, Manning ML, Kitabi E et al (2022) FDA Approval Summary: Decitabine and Cedazuridine Tablets for Myelodysplastic Syndromes. Clin Cancer Res 28:3411–3416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lim B, Yoo D, Chun Y, Go A, Cho KJ, Choi D et al (2022) The preclinical efficacy of the novel hypomethylating agent NTX-301 as a monotherapy and in combination with venetoclax in acute myeloid leukemia. Blood Cancer J 12

  28. Ureshino H, Kurahashi Y, Watanabe T, Yamashita S, Kamachi K, Yamamoto Y et al (2021) Silylation of Deoxynucleotide Analog Yields an Orally Available Drug with Antileukemia Effects. Mol Cancer Ther 20:1412–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by research funds from Wakunaga Pharmaceutical Co. and the Program of the network-type Joint Usage/Research Center for Radiation Disaster Medical Science of Hiroshima University, Nagasaki University, and Fukushima Medical University (to T. Inaba. and T. Ichinohe.).

Author information

Authors and Affiliations

Authors

Contributions

T.M., H.U., T.U., N.K., T.Y. and T.Ichinohe designed, and T.M. and T.U. conducted most experiments; T.U., N.K., T.Y contributed to animal experiments; M.T., K.N. and T.Inaba. performed colony-formation assay; T.M, H.U. and T.U. performed statistical analyses; T.M., H.U., U.T and T. Ichinohe wrote the manuscript, and all authors approved the final version.

Corresponding author

Correspondence to Hiroshi Ureshino.

Ethics declarations

Conflict of interest disclosure

This work was supported by research funds from Wakunaga Pharmaceutical Co., Ltd. T.I. has received research funds from Wakunaga Pharmaceutical Co., Ltd. T.U., NK and T.Y. are full-time employees of Wakunaga Pharmaceutical Co., Ltd. No other authors have relevant conflict-of-interest to declare.

Data sharing

All can be assessed by contacting the corresponding author (H.U.) and last author (T.Ichinohe).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 15 KB)

10637_2023_1393_MOESM2_ESM.pdf

Supplementary file2 Table S1. IC50 in acute myeloid leukemia cell lines and normal human lung fibroblast cell (μM). (PDF 81 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mino, T., Ureshino, H., Ueshima, T. et al. A novel anticancer quinolone, (R)-WAC-224, has anti-leukemia activities against acute myeloid leukemia. Invest New Drugs 41, 751–760 (2023). https://doi.org/10.1007/s10637-023-01393-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-023-01393-0

Keywords

Navigation