Skip to main content

Advertisement

Log in

Dasatinib in combination with BMS-754807 induce synergistic cytotoxicity in lung cancer cells through inhibiting lung cancer cell growth, and inducing autophagy as well as cell cycle arrest at the G1 phase

  • Research
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Abstract

Lung cancer is the leading cause of cancer-related deaths worldwide. Combination of drugs targeting independent signaling pathways would effectively block the proliferation of cancer cells with lower concentrations and stronger synergy effects. Dasatinib, a multi-targeted protein tyrosine kinase inhibitor targeting BCR-ABL and kinases of SRC family, has been successfully applied in the treatment of chronic myeloid leukemia (CML). BMS-754807, an inhibitor targeting the insulin-like growth factor 1 receptor (IGF-IR) and insulin receptor (IR) family kinases, has been in phase I development for the treatment of a variety of human cancers. Herein, we demonstrated that dasatinib in combination with BMS-754807 inhibited lung cancer cell growth, while induced autophagy as well as cell cycle arrest at the G1 phase. Dasatinib in combination with BMS-754807 suppressed the expression of cell cycle marker proteins, Rb, p-Rb, CDK4, CDK6 and Cyclin D1, and the PI3K/Akt/mTOR signaling pathway. Dasatinib in combination with BMS-754807 induced autophagy in lung cancer cells, evidenced by the upregulation of LC3B II and beclin-1, the downregulation of LC3B I and SQSTM1/p62, and the autophagic flux observed with a confocal fluorescence microscopy. Furthermore, dasatinib (18 mg/kg) in combination with BMS-754807 (18 mg/kg) inhibited the growth of tumors in NCI-H3255 xenografts without changing the bodyweight. Overall, our results suggest that dasatinib in combination with BMS-754807 inhibits the lung cancer cell proliferation in vitro and tumor growth in vitro, which indicates promising evidence for the application of the drug combination in lung cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Wang M, Herbst RS, Boshoff C (2021) Toward personalized treatment approaches for non-small-cell lung cancer. Nat Med 27(8):1345–1356

    Article  CAS  PubMed  Google Scholar 

  2. Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman JR, Bharat A, Bruno DS et al (2022) Non-Small Cell Lung Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 20(5):497–530

    Article  PubMed  Google Scholar 

  3. Bade BC, Dela Cruz CS (2020) Lung cancer 2020: epidemiology, etiology, and prevention. Clin Chest Med 41(1):1–24

    Article  PubMed  Google Scholar 

  4. Boumahdi S, de Sauvage FJ (2020) The great escape: tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov 19(1):39–56

    Article  CAS  PubMed  Google Scholar 

  5. Shen J, Li L, Yang T, Cohen PS, Sun G (2020) Biphasic mathematical model of cell-drug interaction that separates target-specific and off-target inhibition and suggests potent targeted drug combinations for multi-driver colorectal cancer cells. Cancers (Basel) 12(2):436

    Article  CAS  PubMed  Google Scholar 

  6. Alkebsi L, Wang X, Ohkawara H, Fukatsu M, Mori H, Ikezoe T (2021) Dasatinib induces endothelial-to-mesenchymal transition in human vascular-endothelial cells: counteracted by cotreatment with bosutinib. Int J Hematol 113(3):441–455

    Article  CAS  PubMed  Google Scholar 

  7. Liu C, Zhu X, Jia Y, Chi F, Qin K, Pei J, Zhang C et al (2021) Dasatinib inhibits proliferation of liver cancer cells, but activation of Akt/mTOR compromises dasatinib as a cancer drug. Acta Biochim Biophys Sin (Shanghai) 53(7):823–836

    Article  CAS  PubMed  Google Scholar 

  8. Huang WC, Kuo KT, Wang CH, Yeh CT, Wang Y (2019) Cisplatin resistant lung cancer cells promoted M2 polarization of tumor-associated macrophages via the Src/CD155/MIF functional pathway. J Exp Clin Cancer Res 38(1):180

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hsu PC, Yang CT, Jablons DM, You L (2020) The crosstalk between src and Hippo/YAP signaling pathways in non-small cell lung cancer (NSCLC). Cancers (Basel) 12(6):1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fan PD, Narzisi G, Jayaprakash AD, Venturini E, Robine N, Smibert P, Germer S et al (2018) YES1 amplification is a mechanism of acquired resistance to EGFR inhibitors identified by transposon mutagenesis and clinical genomics. Proc Natl Acad Sci U S A 115(26):E6030–E6038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fuentes-Baile M, Ventero MP, Encinar JA, García-Morales P, Poveda-Deltell M, Pérez-Valenciano E, Barberá VM et al (2020) Differential effects of IGF-1R small molecule tyrosine kinase inhibitors BMS-754807 and OSI-906 on human cancer cell lines. Cancers (Basel) 12(12):3717

    Article  CAS  PubMed  Google Scholar 

  12. Xue L, Chen F, Yue F, Camacho L, Kothapalli S, Wei G, Huang S et al (2021) Metformin and an insulin/IGF-1 receptor inhibitor are synergistic in blocking growth of triple-negative breast cancer. Breast Cancer Res Treat 185(1):73–84

    Article  CAS  PubMed  Google Scholar 

  13. Zeng B, Liao X, Liu L, Zhang C, Ruan H, Yang B (2021) Thyroid hormone mediates cardioprotection against postinfarction remodeling and dysfunction through the IGF-1/PI3K/AKT signaling pathway. Life Sci 267:118977

    Article  CAS  PubMed  Google Scholar 

  14. Franks SE, Jones RA, Briah R, Murray P, Moorehead RA (2016) BMS-754807 is cytotoxic to non-small cell lung cancer cells and enhances the effects of platinum chemotherapeutics in the human lung cancer cell line A549. BMC Res Notes 9:134

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dong AQ, Kong MJ, Ma ZY, Qian JF, Xu XH (2007) Down-regulation of IGF-IR using small, interfering, hairpin RNA (siRNA) inhibits growth of human lung cancer cell line A549 in vitro and in nude mice. Cell Biol Int 31(5):500–507

    Article  CAS  PubMed  Google Scholar 

  16. Reinmuth N, Kloos S, Warth A, Risch A, Muley T, Hoffmann H, Thomas M et al (2014) Insulin-like growth factor 1 pathway mutations and protein expression in resected non-small cell lung cancer. Hum Pathol 45(6):1162–1168

    Article  CAS  PubMed  Google Scholar 

  17. Siddle K (2011) Signalling by insulin and IGF receptors: supporting acts and new players. J Mol Endocrinol 47(1):R1–10

    Article  CAS  PubMed  Google Scholar 

  18. Lehman CE, Spencer A, Hall S, Shaw JJP, Wulfkuhle J, Petricoin EF, Bekiranov S et al (2021) IGF1R and src inhibition induce synergistic cytotoxicity in HNSCC through inhibition of FAK. Sci Rep 11(1):10826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shen J, Li L, Yang T, Cheng N, Sun G (2019) Drug sensitivity screening and targeted pathway analysis reveal a multi-driver proliferative mechanism and suggest a strategy of combination targeted therapy for colorectal cancer cells. Molecules 24(3):623

    Article  PubMed  PubMed Central  Google Scholar 

  20. Awasthi N, Zhang C, Ruan W, Schwarz MA, Schwarz RE (2012) BMS-754807, a small-molecule inhibitor of insulin-like growth factor-1 receptor/insulin receptor, enhances gemcitabine response in pancreatic cancer. Mol Cancer Ther 11(12):2644–2653

    Article  CAS  PubMed  Google Scholar 

  21. Camidge DR, Otterson GA, Clark JW, Ignatius Ou SH, Weiss J, Ades S, Shapiro GI et al (2021) Crizotinib in patients with MET-amplified NSCLC. J Thorac Oncol 16(6):1017–1029

    Article  CAS  PubMed  Google Scholar 

  22. Chen Z, Chen Q, Cheng Z, Gu J, Feng W, Lei T, Huang J et al (2020) Long non-coding RNA CASC9 promotes gefitinib resistance in NSCLC by epigenetic repression of DUSP1. Cell Death Dis 11(10):858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu R, Chen Y, Liu G, Li C, Song Y, Cao Z, Li W et al (2020) PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis 11(9):797

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nepstad I, Hatfield KJ, Grønningsæter IS, Reikvam H (2020) The PI3K-Akt-mTOR signaling pathway in human acute myeloid leukemia (AML) cells. Int J Mol Sci 21(8):2907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tan AC (2020) Targeting the PI3K/Akt/mTOR pathway in non-small cell lung cancer (NSCLC). Thorac Cancer 11(3):511–518

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bostner J, Karlsson E, Pandiyan MJ, Westman H, Skoog L, Fornander T, Nordenskjöld B et al (2013) Activation of akt, mTOR, and the estrogen receptor as a signature to predict tamoxifen treatment benefit. Breast Cancer Res Treat 137(2):397–406

    Article  CAS  PubMed  Google Scholar 

  27. Lee S, Rauch J, Kolch W (2020) Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity. Int J Mol Sci 21(3):1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Drosten M, Barbacid M (2020) Targeting the MAPK pathway in KRAS-driven tumors. Cancer Cell 37(4):543–550

    Article  CAS  PubMed  Google Scholar 

  29. Martínez-Alonso D, Malumbres M (2020) Mammalian cell cycle cyclins. Semin Cell Dev Biol 107:28–35

    Article  PubMed  Google Scholar 

  30. Hume S, Dianov GL, Ramadan K (2020) A unified model for the G1/S cell cycle transition. Nucleic Acids Res 48(22):12483–12501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Levy JMM, Towers CG, Thorburn A (2017) Targeting autophagy in cancer. Nat Rev Cancer 17(9):528–542

    Article  CAS  PubMed  Google Scholar 

  32. Li X, Yang KB, Chen W, Mai J, Wu XQ, Sun T, Wu RY et al (2021) CUL3 (cullin 3)-mediated ubiquitination and degradation of BECN1 (beclin 1) inhibit autophagy and promote tumor progression. Autophagy 17(12):4323–4340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jia R, Bonifacino JS (2021) The ubiquitin isopeptidase USP10 deubiquitinates LC3B to increase LC3B levels and autophagic activity. J Biol Chem 296:100405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wen W, Li X, Yin M, Wang H, Qin L, Li H, Liu W et al (2021) Selective autophagy receptor SQSTM1/ p62 inhibits Seneca Valley virus replication by targeting viral VP1 and VP3. Autophagy 17(11):3763–3775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Harrison PT, Vyse S, Huang PH (2020) Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer. Semin Cancer Biol 61:167–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Belli S, Esposito D, Servetto A, Pesapane A, Formisano L, Bianco R (2020) c-Src and EGFR inhibition in molecular cancer therapy: what else can we improve? Cancers (Basel) 12(6):1489

    Article  CAS  PubMed  Google Scholar 

  37. Chen Z, Oh D, Dubey AK, Yao M, Yang B, Groves JT, Sheetz M (2018) EGFR family and src family kinase interactions: mechanics matters? Curr Opin Cell Biol 51:97–102

    Article  CAS  PubMed  Google Scholar 

  38. Shen J, Li L, Howlett NG, Cohen PS, Sun G (2020) Application of a biphasic mathematical model of cancer cell drug response for formulating potent and synergistic targeted drug combinations to triple negative breast cancer cells. Cancers (Basel) 12(5):1087

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Y, Wang L, Meng L, Cao G, Wu Y (2019) Sirtuin 6 overexpression relieves sepsis-induced acute kidney injury by promoting autophagy. Cell Cycle 18(4):425–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lőrincz P, Juhász G (2020) Autophagosome-Lysosome Fusion. J Mol Biol 432(8):2462–2482

    Article  PubMed  Google Scholar 

  41. Chang C, Jensen LE, Hurley JH (2021) Autophagosome biogenesis comes out of the black box. Nat Cell Biol 23(5):450–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mareninova OA, Jia W, Gretler SR, Holthaus CL, Thomas DDH, Pimienta M, Dillon DL et al (2020) Transgenic expression of GFP-LC3 perturbs autophagy in exocrine pancreas and acute pancreatitis responses in mice. Autophagy 16(11):2084–2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Salazar G, Cullen A, Huang J, Zhao Y, Serino A, Hilenski L, Patrushev N et al (2020) SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence. Autophagy 16(6):1092–1110

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the grants from the National Natural Science Foundation of China (Nos. 30901821 and 81172136), Natural Science Basic Project of Shanxi Province, China (No. 20210302124183), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2021L339), Nature Science Project of Shanxi Province, China (Nos. 201701D121165 and 201901D111190), Natural Science Foundation for Young Scientists of Shanxi Province, China (No. 201801D221069), Research Project Supported by Shanxi Scholarship Council of China (Nos. 2020 − 194 and 2021 − 165), Open Fund from Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China (No. KLMEC/SXMU-202011), Shanxi ‘1331 Project’ Key Subjects Construction, China (No. 1331KSC), Outstanding Youth Foundation of Shanxi Province, China (No. 201901D211547), Scientific research project of Shanxi Provincial Health Commission, China (No. 2019059), “136” College-level open fund, China (No. 2021YZ03).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: CZ, CL, BY. Performed the experiments: CZ, XZ, ZW. Analyzed the data: CZ, CL. Contributed reagents/materials/analytical tools: CZ, XZ, ZW, TG, HZ, DZ, YN, XL, XZ, GL, XD, LZ, JX. Wrote the paper: CZ, CL, BY.

Corresponding authors

Correspondence to Chang Liu, Jun Xu or Baofeng Yu.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhao, X., Wang, Z. et al. Dasatinib in combination with BMS-754807 induce synergistic cytotoxicity in lung cancer cells through inhibiting lung cancer cell growth, and inducing autophagy as well as cell cycle arrest at the G1 phase. Invest New Drugs 41, 438–452 (2023). https://doi.org/10.1007/s10637-023-01360-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-023-01360-9

Keywords

Navigation