Skip to main content

Advertisement

Log in

A phase II study of sapanisertib (TAK-228) a mTORC1/2 inhibitor in rapalog-resistant advanced pancreatic neuroendocrine tumors (PNET): ECOG-ACRIN EA2161

  • Research
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

This was a two-stage phase II trial of a mTORC1/2 inhibitor (mTORC: mammalian target of rapamycin complex) Sapanisertib (TAK228) in patients with rapalog-resistant pancreatic neuroendocrine tumors (PNETs) (NCT02893930). Approved rapalogs such as everolimus inhibit mTORC1 and have limited clinical activity, possibly due to compensatory feedback loops. Sapanisertib addresses the potential for incomplete inhibition of the mTOR pathway through targeting of both mTORC1 and mTORC2, and thus to reverse resistance to earlier rapamycin analogues. In stage 1, patients received sapanisertib 3 mg by mouth once daily on a continuous dosing schedule in 28-day cycle. This trial adopted a two-stage design with the primary objective of evaluating objective tumor response. The first stage would recruit 13 patients in order to accrue 12 eligible and treated patients. If among the 12 eligible patients at least 1 patient had an objective response to therapy, the study would move to the second stage of accrual where 25 eligible and treated patients would be enrolled. This study activated on February 1, 2017, the required pre-determined number of patients (n = 13) had entered by November 5, 2018 for the first stage response evaluation. The accrual of this trial was formally terminated on December 27, 2019 as no response had been observed after the first stage accrual. Treatment-related grade 3 adverse events were reported in eight (61%) patients with hyperglycemia being the most frequent, in three patients (23%). Other toxicities noted in the trial included fatigue, rash diarrhea, nausea, and vomiting. The median PFS was 5.19 months (95% CI [3.84, 9.30]) and the median OS was 20.44 months (95% CI [5.65, 22.54]). Due to the lack of responses in Stage 1 of the study, the study did not proceed to stage 2. Thus the potential to reverse resistance was not evident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Milan SA, Yeo CJ (2012) Neuroendocrine tumors of the pancreas. Curr Opin Oncol 24(1):46e55

    Article  Google Scholar 

  2. Yao JC, Eisner MP, Leary C et al (2007) Population-based study of islet cell car- cinoma. Ann Surg Oncol 14:3492e3500

    Article  Google Scholar 

  3. Averous J, Proud CG (2006) When translation meets transformation: the mTOR story. Oncogene 25:6423–6435

    Article  CAS  PubMed  Google Scholar 

  4. Bjornsti MA, Houghton PJ (2004) The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4:335–348. https://doi.org/10.1038/nrc1362

    Article  CAS  PubMed  Google Scholar 

  5. Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, Schulick RD, Tang LH, Wolfgang CL, Choti MA, Velculescu VE, Diaz LA, Vogelstein B, Kinzler KW, Hruban RH, Papadopoulos N (2011) DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331:1199–1203. https://doi.org/10.1126/science.1200609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Missiaglia E, Dalai I, Barbi S, Beghelli S, Falconi M, della Peruta M, Piemonti L, Capurso G, Di Florio A, delle Fave G, Pederzoli P, Croce CM, Scarpa A (2010) Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. J Clin Oncol 2

  7. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell. 10(3):457e468

    Article  Google Scholar 

  8. Pavel ME, Hainsworth JD, Baudin E, Peeters M, Ho€rsch D, Winkler RE, Klimovsky J, Lebwohl D, Jehl V, Wolin EM et al (2011) Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumors associated with carcinoid syndrome (RADIANT-2): a randomized, placebo-controlled, phase 3 study. Lancet 378:2005e2012

    Article  Google Scholar 

  9. Zeng Z, Sarbassov D, Samudio IJ et al (2007) Rapamycin derivatives reduce mTORC2 signaling and inhibit AKTactivation in AML. Blood 109:3509e3512

    Article  Google Scholar 

  10. Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, Majumder PK, Baselga J, Rosen N (2011) AKTinhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 19:58–71. https://doi.org/10.1016/j.ccr.2010.10.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Haruta T, Uno T, Kawahara J, Takano A, Egawa K, Sharma PM, Olefsky JM, Kobayashi M (2000) A rapamycin-sensitive pathway downregulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol Endocrinol 14:783–794. https://doi.org/10.1210/mend.14.6.0446

    Article  CAS  PubMed  Google Scholar 

  12. Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, Shi EY, Stumpf CR, Christensen C, Bonham MJ et al (2012) The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485:55–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D, Shokat KM (2009) Activesite inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 7:e38

    Article  PubMed  Google Scholar 

  14. Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycinresistant functions of mTORC1. J Biol Chem 284:8023–8032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hsieh AC, Costa M, Zollo O, Davis C, Feldman ME, Testa JR, Meyuhas O, Shokat KM, Ruggero D (2010) Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell 17:249–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Janes MR, Limon JJ, So L, Chen J, Lim RJ, Chavez MA, Vu C, Lilly MB, Mallya S, Ong ST et al (2010) Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med 16:205–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hsieh AC, Ruggero D (2010) Targeting eukaryotic translation initiation factor 4E (eIF4E) in cancer. Clin Cancer Res 16:4914–4920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burris III HA, Kurkjian CD, Hart L, Pant S, Murphy PB, Jones SF, Neuwirth R, Patel CG, Zohren F, Infante JR (2017) TAK-228 (formerly MLN0128), an investigational dual TORC1/2 inhibitor plus paclitaxel, with/without trastuzumab, in patients with advanced solid malignancies. Cancer Chemother. Pharm. 80:261–273

    Article  Google Scholar 

  19. Ghobrial IM, Siegel DS, Vij R, Berdeja JG, Richardson PG, Neuwirth R, Patel CG, Zohren F, Wolf JL (2016) TAK-228 (formerly MLN0128), an investigational oral dual TORC1/2 inhibitor: A phase I dose escalation study in patients with relapsed or refractory multiple myeloma, non-Hodgkin lymphoma, or Waldenstrom’s macroglobulinemia. Am J Hematol 91:400–405

    Article  CAS  PubMed  Google Scholar 

  20. Chamberlain CE, German MS, Yang K, Wang J, VanBrocklin H, Regan M, Shokat KM, Ducker GS, Kim GE, Hann B, Donner DB, Warren RS, Venook AP, Bergsland EK, Lee D, Wang Y, Nakakura EK (2018) A Patient-derived Xenograft Model of Pancreatic Neuroendocrine Tumors Identifies Sapanisertib as a Possible New Treatment for Everolimus-resistant Tumors. Mol Cancer Ther 17(12):2702–2709. https://doi.org/10.1158/1535-7163.MCT-17-1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumors: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247

    Article  CAS  PubMed  Google Scholar 

  22. Faivre S, Niccoli P, Castellano D, Valle JW, Hammel P, Raoul JL, Vinik A, Van Cutsem E, Bang YJ, Lee SH, Borbath I, Lombard-Bohas C, Metrakos P, Smith D, Chen JS, Ruszniewski P, Seitz JF, Patyna S, Lu DR, Ishak KJ, Raymond E (2017) Sunitinib in pancreatic neuroendocrine tumors: updated progression-free survival and final overall survival from a phase III randomized study. Ann Oncol 28(2):339–343. https://doi.org/10.1093/annonc/mdw561

    Article  CAS  PubMed  Google Scholar 

  23. Yao JC, Shah MH, Ito T et al (2011) Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 364(6):514–523. https://doi.org/10.1056/NEJMoa1009290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yoon SO, Shin S, Karreth FA, Blenis J, Karreth FA, Jedrychowski MP et al (2017) Focal adhesion- and IGF1R-dependent survival and migratory pathways mediate tumor resistance to mTORC1/2 inhibition. Mol Cell. https://doi.org/10.1016/j.molcel.2017.06.033

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hoang B, Frost P, Shi Y, Belanger E, Benavides A, Pezeshkpour G, et al. (2010) Targeting TORC2 in multiple myeloma with a new mTOR kinase inhibitor. Blood. L. Formisano, et al. Critical Rev Oncol/Hematol 147(2020):102886 9 https://doi.org/10.1182/blood-2010-05-285726

  26. Ghobrial IM, Siegel DS, Vij R et al (2016) TAK-228 (formerly MLN0128), an investigational oral dual TORC1/2 inhibitor: A phase I dose escalation study in patients with relapsed or refractory multiple myeloma, non- Hodgkin lymphoma, or Waldenström’s macroglobulinemia. Am J Hematol 91:400–405

    Article  CAS  PubMed  Google Scholar 

  27. Voss M, Gordon MS, Mita M et al (2015) 354 Phase I study of investigational oral mTORC1/2 inhibitor MLN0128: Expansion phase in patients with renal, endometrial, or bladder cancer. Eur J Cancer 51:S72

    Article  Google Scholar 

  28. Khadka P, Ro J, Kim H et al (2014) Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm 9:304–316. https://doi.org/10.1016/j.ajps.2014.05.005[CrossRef][GoogleScholar]

    Article  Google Scholar 

  29. Loh ZH, Samanta AK, Sia Heng PW (2015) Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J Pharm 10:255–274. https://doi.org/10.1016/j.ajps.2014.12.006[CrossRef][GoogleScholar]

    Article  Google Scholar 

  30. Burris H, Hart L, Kurkjian C et al (2012) A phase 1, open-label, dose-escalation study of oral administration of the investigational agent MLN0128 in combination with paclitaxel (P) in patients (pts) with advance

  31. Grabiner BC, Nardi V, Birsoy K, Possemato R, Shen K, Sinha S et al (2014) A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-13-0929

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sato T, Nakashima A, Guo L, Coffman K, Tamanoi F (2010) Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer. Oncogene. https://doi.org/10.1038/onc.2010.28

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ghosh AP, Marshall CB, Coric T, Shim E, Kirkman R, Ballestas ME et al. (2015) Point mutations of the mTOR-RHEB pathway in renal cell carcinoma. Oncotarget

  34. Rodrik-Outmezguine VS, Chandarlapaty S, Pagano NC, Poulikakos PI, Scaltriti M, Moskatel E et al (2011) mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKTsignaling. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-11-0085

    Article  PubMed  PubMed Central  Google Scholar 

  35. Infante JR, Tabernero J, Cervantes A et al (2013) Abstract C252: A phase 1, dose-escalation study of MLN0128, an investigational oral mammalian target of rapamycin complex 1/2 (mTORC1/2) catalytic inhibitor, in patients (pts) with advanced non-hematologic malignancies. Mol Cancer Ther 12(Suppl):C252. https://doi.org/10.1158/1535-7163.TARG-13-C252[CrossRef][GoogleScholar]

    Article  Google Scholar 

  36. Hudes G, Carducci M, Tomczak P et al (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356:2271–2281

    Article  CAS  PubMed  Google Scholar 

  37. Motzer RJ, Escudier B, Oudard S et al (2010) Phase 3 trial of everolimus for metastatic renal cell carcinoma : final results and analysis of prognostic factors. Cancer 116:4256–4265

    Article  CAS  PubMed  Google Scholar 

  38. Yao JC, Shah MH, Ito T et al (2011) Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 364:514–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Salazar R, Garcia-Carbonero R, Libutti SK, Hendifar AE, Custodio A, Guimbaud R, Lombard-Bohas C, Ricci S, Klümpen HJ, Capdevila J et al (2018) Phase II study of BEZ235 versus everolimus in patients with mammalian target of rapamycin inhibitor-naïve advanced pancreatic neuroendocrine tumors. Oncologist 23:766-e90 ([CrossRef])

    Article  CAS  PubMed  Google Scholar 

  40. Powles T, Wheater M, Din O, Geldart T, Boleti E, Stockdale A, Sundar S, Robinson A, Ahmed I, Wimalasingham A et al (2016) A randomised phase 2 study of AZD2014 versus everolimus in patients with VEGFrefractory metastatic clear cell renal cancer. Eur Urol 69:450–456. https://doi.org/10.1016/j.eururo.2015.08.035

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was conducted by the ECOG-ACRIN Cancer Research Group (Peter J. O'Dwyer, MD and Mitchell D. Schnall, MD, PhD, Group Co-Chairs) and supported by the National Cancer Institute of the National Institutes of Health under the award numbers: U10CA180821, U10CA180820, U10CA180794, and UG1CA233320. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Contributing to the concept and/or design of the work: Lakshmi Rajdev, Steven K. Libutti, Al B. Benson, George A. Fisher, Jr, Pamela L. Kunz, Paul Catalano and Peter J. O'Dwyer. Collection and Assembly of Data: Lakshmi Rajdev, Ju-Whei Lee, Paul Catalano and Andrew E. Hendifar. Data Analysis and Interpretation: Lakshmi Rajdev, Ju-Whei Lee, Paul Catalano and Peter J. O'Dwyer. Drafting the work: Lakshmi Rajdev and Ju-Whei Lee. Reviewing/revising it critically and final approval of the version to be published: All authors. Accountable for all aspects of the work: All authors.

Corresponding author

Correspondence to Lakshmi Rajdev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajdev, L., Lee, JW., Libutti, S.K. et al. A phase II study of sapanisertib (TAK-228) a mTORC1/2 inhibitor in rapalog-resistant advanced pancreatic neuroendocrine tumors (PNET): ECOG-ACRIN EA2161. Invest New Drugs 40, 1306–1314 (2022). https://doi.org/10.1007/s10637-022-01311-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-022-01311-w

Keywords

Navigation