Summary
The Hedgehog/Glioma-associated oncogene homolog (HH/GLI) signaling pathway regulates self-renewal of rare and highly malignant cancer stem cells, which have been shown to account for the initiation and maintenance of tumor growth as well as for drug resistance, metastatic spread and relapse. As an important component of the Hh signaling pathway, glioma-associated oncogene (GLI) acts as a key signal transmission hub for various signaling pathways in many tumors. Here, we review direct and indirect inhibitors of GLI; summarize the abundant active structurally diverse natural GLI inhibitors; and discuss how to better develop and utilize GLI inhibitors to solve the problem of drug resistance in tumors of interest. In summary, GLI inhibitors will be promising candidates for various cancer treatments.
This is a preview of subscription content, access via your institution.










Data availability
All authors ensure that all data and materials as well as software applications and custom code support their published claims and comply with field standards.
Code availability
Not applicable.
References
Robarge KD, Brunton SA, Castanedo GM et al (2009) GDC-0449-a potent inhibitor of the Hedgehog pathway. Bioorg Med Chem Lett 19:5576–5581. https://doi.org/10.1016/j.bmcl.2009.08.049
Pan S, Wu X, Jiang J et al (2010) Discovery of NVP-LDE225, a potent and selective smoothened antagonist. ACS Med Chem Lett 1:130–134. https://doi.org/10.1021/ml1000307
Atwood SX, Sarin KY, Whitson RJ, Li JR, Kim G, Rezaee M, Ally MS, Kim J, Yao C, Chang AL, Oro AE, Tang JY (2015) Smoothened variants explain the majority of drug resistance in basal cell carcinoma. Cancer Cell 27:342–353. https://doi.org/10.1016/j.ccell.2015.02.002
Infante P, Mori M, Alfonsi R et al (2015) Gli1/DNA interaction is a druggable target for Hedgehog-dependent tumors. EMBO J 34:200–217. https://doi.org/10.15252/embj.201489213
Liu Y, Gao S, Zhu J, Zheng Y, Zhang H, Sun H (2018) Dihydroartemisinin induces apoptosis and inhibits proliferation, migration, and invasion in epithelial ovarian cancer via inhibition of the Hedgehog signaling pathway. Cancer Med 7:5704–5715. https://doi.org/10.1002/cam4.1827
Sagai T, Amano T, Maeno A, Ajima R, Shiroishi T (2019) SHH signaling mediated by a prechordal and brain enhancer controls forebrain organization. Proc Natl Acad Sci U S A 116:23636–23642. https://doi.org/10.1073/pnas.1901732116
Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK (2005) Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet 1:e53. https://doi.org/10.1371/journal.pgen.0010053
Liu A, Wang B, Niswander LA (2005) Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 132:3103–3111. https://doi.org/10.1242/dev.01894
Niewiadomski P, Kong JH, Ahrends R, Ma Y, Humke EW, Khan S, Teruel MN, Novitch BG, Rohatgi R (2014) Gli protein activity is controlled by multisite phosphorylation in vertebrate Hedgehog signaling. Cell Rep 6:168–181. https://doi.org/10.1016/j.celrep.2013.12.003
Gulino A, Di Marcotullio L, Canettieri G, De Smaele E, Screpanti I (2012) Hedgehog/Gli control by ubiquitination/acetylation interplay. Vitam Horm 88:211–227. https://doi.org/10.1016/B978-0-12-394622-5.00009-2
Pan Y, Wang C, Wang B (2009) Phosphorylation of Gli2 by protein kinase A is required for Gli2 processing and degradation and the Sonic Hedgehog-regulated mouse development. Dev Biol 326:177–189. https://doi.org/10.1016/j.ydbio.2008.11.009
Jia J, Amanai K, Wang G, Tang J, Wang B, Jiang J (2002) Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Nature 416:548–552. https://doi.org/10.1038/nature733
Atwood SX, Li M, Lee A, Tang JY, Oro AE (2013) GLI activation by atypical protein kinase C iota/lambda regulates the growth of basal cell carcinomas. Nature 494:484–488. https://doi.org/10.1038/nature11889
Zeng X, Ju D (2018) Hedgehog signaling pathway and autophagy in cancer. Int J Mol Sci 19:2279. https://doi.org/10.3390/ijms19082279
Kogerman P, Grimm T, Kogerman L, Krause D, Unden AB, Sandstedt B, Toftgard R, Zaphiropoulos PG (1999) Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol 1:312–319. https://doi.org/10.1038/13031
Hui CC, Angers S (2011) Gli proteins in development and disease. Annu Rev Cell Dev Biol 27:513–537. https://doi.org/10.1146/annurev-cellbio-092910-154048
Briscoe J, Therond PP (2013) The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 14:416–429. https://doi.org/10.1038/nrm3598
Bangs F, Anderson KV (2017) Primary cilia and mammalian Hedgehog signaling. Cold Spring Harb Perspect Biol 9:a028175. https://doi.org/10.1101/cshperspect.a028175
Aberger F, Hutterer E, Sternberg C, Del Burgo PJ, Hartmann TN (2017) Acute myeloid leukemia - strategies and challenges for targeting oncogenic Hedgehog/GLI signaling. Cell Commun Signal 15:8. https://doi.org/10.1186/s12964-017-0163-4
Noubissi FK, Yedjou CG, Spiegelman VS, Tchounwou PB (2018) Cross-talk between Wnt and Hh signaling pathways in the pathology of basal cell carcinoma. Int J Environ Res Public Health 15:1442. https://doi.org/10.3390/ijerph15071442
Qin T, Li B, Feng X et al (2018) Abnormally elevated USP37 expression in breast cancer stem cells regulates stemness, epithelial-mesenchymal transition and cisplatin sensitivity. J Exp Clin Cancer Res 37:287. https://doi.org/10.1186/s13046-018-0934-9
Bhateja P, Cherian M, Majumder S, Ramaswamy B (2019) The Hedgehog signaling pathway: a viable target in breast cancer? Cancers (Basel) 11:1126. https://doi.org/10.3390/cancers11081126
Riobo-Del Galdo NA, Lara Montero A, Wertheimer EV (2019) Role of Hedgehog signaling in breast cancer: pathogenesis and therapeutics. Cells 8:375. https://doi.org/10.3390/cells8040375
Xu Y, Song S, Wang Z, Ajani JA (2019) The role of Hedgehog signaling in gastric cancer: molecular mechanisms, clinical potential, and perspective. Cell Commun Signal 17:157. https://doi.org/10.1186/s12964-019-0479-3
Gambichler T, Hartenstein I, Dreissigacker M, Stockfleth E, Stucker M, Schaller J, Schulze HJ, Becker JC, Kafferlein HU, Bruning T, Lang K (2021) Expression of Hedgehog signalling molecules in microcystic adnexal carcinoma. Clin Exp Dermatol 46:1052–1057. https://doi.org/10.1111/ced.14634
Krauss S, Concordet JP, Ingham PW (1993) A functionally conserved homolog of the Drosophila segment polarity gene Hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75:1431–1444. https://doi.org/10.1016/0092-8674(93)90628-4
Mohler J (1988) Requirements for Hedgehog, a segmental polarity gene, in patterning larval and adult cuticle of Drosophila. Genetics 120:1061–1072
Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, Corbett AH (2007) Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem 282:5101–5105. https://doi.org/10.1074/jbc.R600026200
Han Y, Shi Q, Jiang J (2015) Multisite interaction with Sufu regulates Ci/Gli activity through distinct mechanisms in Hh signal transduction. Proc Natl Acad Sci U S A 112:6383–6388. https://doi.org/10.1073/pnas.1421628112
Ruppert JM, Kinzler KW, Wong AJ, Bigner SH, Kao FT, Law ML, Seuanez HN, O’Brien SJ, Vogelstein B (1988) The GLI-Kruppel family of human genes. Mol Cell Biol 8:3104–3113. https://doi.org/10.1128/mcb.8.8.3104
Aberger F, Ruiz i Altaba A, (2014) Context-dependent signal integration by the GLI code: the oncogenic load, pathways, modifiers and implications for cancer therapy. Semin Cell Dev Biol 33:93–104. https://doi.org/10.1016/j.semcdb.2014.05.003
Pavletich NP, Pabo CO (1993) Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science 261:1701–1707. https://doi.org/10.1126/science.8378770
Jinawath A, Akiyama Y, Sripa B, Yuasa Y (2007) Dual blockade of the Hedgehog and ERK1/2 pathways coordinately decreases proliferation and survival of cholangiocarcinoma cells. J Cancer Res Clin Oncol 133:271–278. https://doi.org/10.1007/s00432-006-0166-9
Nolan-Stevaux O, Lau J, Truitt ML, Chu GC, Hebrok M, Fernandez-Zapico ME, Hanahan D (2009) GLI1 is regulated through smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation. Genes Dev 23:24–36. https://doi.org/10.1101/gad.1753809
Bangs FK, Miller P, O’Neill E (2020) Ciliogenesis and Hedgehog signalling are suppressed downstream of KRAS during acinar-ductal metaplasia in mouse. Dis Model Mech 13:dmm044289. https://doi.org/10.1242/dmm.044289
Ji Z, Mei FC, Xie J, Cheng X (2007) Oncogenic KRAS activates Hedgehog signaling pathway in pancreatic cancer cells. J Biol Chem 282:14048–14055. https://doi.org/10.1074/jbc.M611089200
Lauth M, Bergstrom A, Shimokawa T, Tostar U, Jin Q, Fendrich V, Guerra C, Barbacid M, Toftgard R (2010) DYRK1B-dependent autocrine-to-paracrine shift of Hedgehog signaling by mutant RAS. Nat Struct Mol Biol 17:718–725. https://doi.org/10.1038/nsmb.1833
Tang Y, Gholamin S, Schubert S et al (2014) Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nat Med 20:732–740. https://doi.org/10.1038/nm.3613
Long J, Li B, Rodriguez-Blanco J, Pastori C, Volmar CH, Wahlestedt C, Capobianco A, Bai F, Pei XH, Ayad NG, Robbins DJ (2014) The BET bromodomain inhibitor I-BET151 acts downstream of smoothened protein to abrogate the growth of Hedgehog protein-driven cancers. J Biol Chem 289:35494–35502. https://doi.org/10.1074/jbc.M114.595348
Yamamoto K, Tateishi K, Kudo Y et al (2016) Stromal remodeling by the BET bromodomain inhibitor JQ1 suppresses the progression of human pancreatic cancer. Oncotarget 7:61469–61484. https://doi.org/10.18632/oncotarget.11129
Huang Y, Nahar S, Nakagawa A et al (2016) Regulation of GLI underlies a role for BET bromodomains in pancreatic cancer growth and the tumor microenvironment. Clin Cancer Res 22:4259–4270. https://doi.org/10.1158/1078-0432.CCR-15-2068
Geng Y, Liu J, Xie Y, Jiang H, Zuo K, Li T, Liu Z (2018) Trichostatin A promotes GLI1 degradation and P21 expression in multiple myeloma cells. Cancer Manag Res 10:2905–2914. https://doi.org/10.2147/CMAR.S167330
Canettieri G, Di Marcotullio L, Greco A et al (2010) Histone deacetylase and Cullin3-REN(KCTD11) ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation. Nat Cell Biol 12:132–142. https://doi.org/10.1038/ncb2013
Lauth M, Bergstrom A, Shimokawa T, Toftgard R (2007) Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci U S A 104:8455–8460. https://doi.org/10.1073/pnas.0609699104
Tong W, Qiu L, Qi M, Liu J, Hu K, Lin W, Huang Y, Fu J (2018) GANT-61 and GDC-0449 induce apoptosis of prostate cancer stem cells through a GLI-dependent mechanism. J Cell Biochem 119:3641–3652. https://doi.org/10.1002/jcb.26572
Carballo GB, Ribeiro JH, Lopes GPF, Ferrer VP, Dezonne RS, Pereira CM, Spohr T (2020) GANT-61 induces autophagy and apoptosis in glioblastoma cells despite their heterogeneity. Cell Mol Neurobiol 41:1227–1244. https://doi.org/10.1007/s10571-020-00891-6
Harada K, Ohashi R, Naito K, Kanki K (2020) Hedgehog signal inhibitor GANT61 inhibits the malignant behavior of undifferentiated hepatocellular carcinoma cells by targeting non-canonical GLI signaling. Int J Mol Sci 21:3126. https://doi.org/10.3390/ijms21093126
Chakrabarti J, Holokai L, Syu L, Steele NG, Chang J, Wang J, Ahmed S, Dlugosz A, Zavros Y (2018) Hedgehog signaling induces PD-L1 expression and tumor cell proliferation in gastric cancer. Oncotarget 9:37439–37457. https://doi.org/10.18632/oncotarget.26473
Chang Y, Chen H, Duan J, Wu W, Le F, Mou F (2020) The inhibitory effect and safety of GANT61 on HeLa cells in nude mice. Exp Mol Pathol 113:104352. https://doi.org/10.1016/j.yexmp.2019.104352
Chang J, Xu W, Liu G, Du X, Li X (2017) Downregulation of Rab23 in prostate cancer inhibits tumor growth in vitro and in vivo. Oncol Res 25:241–248. https://doi.org/10.3727/096504016X14742891049118
Azatyan A, Gallo-Oller G, Diao Y, Selivanova G, Johnsen JI, Zaphiropoulos PG (2019) RITA downregulates Hedgehog-GLI in medulloblastoma and rhabdomyosarcoma via JNK-dependent but p53-independent mechanism. Cancer Lett 442:341–350. https://doi.org/10.1016/j.canlet.2018.11.005
Calcaterra A, Iovine V, Botta B et al (2018) Chemical, computational and functional insights into the chemical stability of the Hedgehog pathway inhibitor GANT61. J Enzyme Inhib Med Chem 33:349–358. https://doi.org/10.1080/14756366.2017.1419221
Vlckova K, Reda J, Ondrusova L, Krayem M, Ghanem G, Vachtenheim J (2016) GLI inhibitor GANT61 kills melanoma cells and acts in synergy with obatoclax. Int J Oncol 49:953–960. https://doi.org/10.3892/ijo.2016.3596
Beauchamp EM, Uren A (2012) A new era for an ancient drug: arsenic trioxide and Hedgehog signaling. Vitam Horm 88:333–354. https://doi.org/10.1016/B978-0-12-394622-5.00015-8
Nagai K, Hou L, Li L, Nguyen B, Seale T, Shirley C, Ma H, Levis M, Ghiaur G, Duffield A, Small D (2018) Combination of ATO with FLT3 TKIs eliminates FLT3/ITD+ leukemia cells through reduced expression of FLT3. Oncotarget 9:32885–32899. https://doi.org/10.18632/oncotarget.25972
Porter AC, Fanger GR, Vaillancourt RR (1999) Signal transduction pathways regulated by arsenate and arsenite. Oncogene 18:7794–7802. https://doi.org/10.1038/sj.onc.1203214
Kim J, Lee JJ, Kim J, Gardner D, Beachy PA (2010) Arsenic antagonizes the Hedgehog pathway by preventing ciliary accumulation and reducing stability of the Gli2 transcriptional effector. Proc Natl Acad Sci U S A 107:13432–13437. https://doi.org/10.1073/pnas.1006822107
You M, Varona-Santos J, Singh S, Robbins DJ, Savaraj N, Nguyen DM (2014) Targeting of the Hedgehog signal transduction pathway suppresses survival of malignant pleural mesothelioma cells in vitro. J Thorac Cardiovasc Surg 147:508–516. https://doi.org/10.1016/j.jtcvs.2013.08.035
Huang XB, Shi Y, Wang CS, Wang XD, Cheng J, Che FF (2016) Synergistic inhibitory effect of arsenic trioxide combined with itraconazole on Hedgehog pathway of multiple myeloma NCI-H929 cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi 24:1459–1465. https://doi.org/10.7534/j.issn.1009-2137.2016.05.032
Xiong YJ, Guo YJ, Gao YR, Li S, Dai ZH, Dong XQ, Xu YF, Liu CQ, Liu ZY (2015) Synergism between arsenic trioxide and cyclopamine in the inhibition of PC3 cell survival via the Hedgehog signaling pathway. Neoplasma 62:894–904. https://doi.org/10.4149/neo_2015_109
Kozono S, Lin YM, Seo HS et al (2018) Arsenic targets Pin1 and cooperates with retinoic acid to inhibit cancer-driving pathways and tumor-initiating cells. Nat Commun 9:3069. https://doi.org/10.1038/s41467-018-05402-2
Litzow MR (2008) Arsenic trioxide. Expert Opin Pharmacother 9:1773–1785. https://doi.org/10.1517/14656566.9.10.1773
Xu X, Wang H, Li H, Hu X, Zhang Y, Guan X, Toy PH, Sun H (2019) S-Dimethylarsino-glutathione (darinaparsin(R)) targets histone H3.3, leading to TRAIL-induced apoptosis in leukemia cells. Chem Commun (Camb) 55:13120–13123. https://doi.org/10.1039/c9cc07605k
Mann KK, Wallner B, Lossos IS, Miller WH Jr (2009) Darinaparsin: a novel organic arsenical with promising anticancer activity. Expert Opin Investig Drugs 18:1727–1734. https://doi.org/10.1517/13543780903282759
Nielsen TH, Johnson N, Garnier N et al (2013) Monitoring response and resistance to the novel arsenical darinaparsin in an AML patient. Front Pharmacol 4:9. https://doi.org/10.3389/fphar.2013.00009
Tian J, Zhao H, Nolley R, Reese SW, Young SR, Li X, Peehl DM, Knox SJ (2012) Darinaparsin: solid tumor hypoxic cytotoxin and radiosensitizer. Clin Cancer Res 18:3366–3376. https://doi.org/10.1158/1078-0432.CCR-11-3179
Yehiayan L, Stice S, Liu G, Matulis S, Boise LH, Cai Y (2014) Dimethylarsinothioyl glutathione as a metabolite in human multiple myeloma cell lines upon exposure to Darinaparsin. Chem Res Toxicol 27:754–764. https://doi.org/10.1021/tx400386c
Matulis SM, Morales AA, Yehiayan L, Croutch C, Gutman D, Cai Y, Lee KP, Boise LH (2009) Darinaparsin induces a unique cellular response and is active in an arsenic trioxide-resistant myeloma cell line. Mol Cancer Ther 8:1197–1206. https://doi.org/10.1158/1535-7163.MCT-08-1072
Bansal N, Farley NJ, Wu L, Lewis J, Youssoufian H, Bertino JR (2015) Darinaparsin inhibits prostate tumor-initiating cells and Du145 xenografts and is an inhibitor of Hedgehog signaling. Mol Cancer Ther 14:23–30. https://doi.org/10.1158/1535-7163.MCT-13-1040
Ravi D, Bhalla S, Gartenhaus RB, Crombie J, Kandela I, Sharma J, Mazar A, Evens AM (2014) The novel organic arsenical darinaparsin induces MAPK-mediated and SHP1-dependent cell death in T-cell lymphoma and Hodgkin lymphoma cells and human xenograft models. Clin Cancer Res 20:6023–6033. https://doi.org/10.1158/1078-0432.CCR-14-1532
Hyman JM, Firestone AJ, Heine VM et al (2009) Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proc Natl Acad Sci U S A 106:14132–14137. https://doi.org/10.1073/pnas.0907134106
Sasaki H, Nishizaki Y, Hui C, Nakafuku M, Kondoh H (1999) Regulation of Gli2 and Gli3 activities by an amino-terminal repression domain: implication of Gli2 and Gli3 as primary mediators of Shh signaling. Development 126:3915–3924
Riobo NA, Lu K, Ai X, Haines GM, Emerson CP Jr (2006) Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc Natl Acad Sci U S A 103:4505–4510. https://doi.org/10.1073/pnas.0504337103
Chenna V, Hu C, Pramanik D, Aftab BT, Karikari C, Campbell NR, Hong SM, Zhao M, Rudek MA, Khan SR, Rudin CM, Maitra A (2012) A polymeric nanoparticle encapsulated small-molecule inhibitor of Hedgehog signaling (NanoHHI) bypasses secondary mutational resistance to Smoothened antagonists. Mol Cancer Ther 11:165–173. https://doi.org/10.1158/1535-7163.MCT-11-0341
Shi X, Liu C, Liu B, Chen J, Wu X, Gong W (2018) JQ1: a novel potential therapeutic target. Pharmazie 73:491–493. https://doi.org/10.1691/ph.2018.8480
Owen DJ, Ornaghi P, Yang JC, Lowe N, Evans PR, Ballario P, Neuhaus D, Filetici P, Travers AA (2000) The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J 19:6141–6149. https://doi.org/10.1093/emboj/19.22.6141
Alvarez-Trotta A, Wang Z, Shersher E, Li B, Long J, Lohse I, Wahlestedt C, El-Rifai W, Robbins DJ, Capobianco AJ (2020) The bromodomain inhibitor IBET-151 attenuates vismodegib-resistant esophageal adenocarcinoma growth through reduction of GLI signaling. Oncotarget 11:3174–3187. https://doi.org/10.18632/oncotarget.27699
Ozdemir BC, Pentcheva-Hoang T, Carstens JL et al (2014) Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25:719–734. https://doi.org/10.1016/j.ccr.2014.04.005
Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42. https://doi.org/10.1038/nrg2485
Parra M, Verdin E (2010) Regulatory signal transduction pathways for class IIa histone deacetylases. Curr Opin Pharmacol 10:454–460. https://doi.org/10.1016/j.coph.2010.04.004
Dhanyamraju PK, Holz PS, Finkernagel F, Fendrich V, Lauth M (2015) Histone deacetylase 6 represents a novel drug target in the oncogenic Hedgehog signaling pathway. Mol Cancer Ther 14:727–739. https://doi.org/10.1158/1535-7163.MCT-14-0481
De Smaele E, Di Marcotullio L, Moretti M et al (2011) Identification and characterization of KCASH2 and KCASH3, 2 novel Cullin3 adaptors suppressing histone deacetylase and Hedgehog activity in medulloblastoma. Neoplasia 13:374–385. https://doi.org/10.1593/neo.101630
Mirza AN, Fry MA, Urman NM et al (2017) Combined inhibition of atypical PKC and histone deacetylase 1 is cooperative in basal cell carcinoma treatment. JCI Insight 2:e97071. https://doi.org/10.1172/jci.insight.97071
Suraweera A, O’Byrne KJ, Richard DJ (2018) Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Front Oncol 8:92. https://doi.org/10.3389/fonc.2018.00092
Falkenberg KJ, Johnstone RW (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13:673–691. https://doi.org/10.1038/nrd4360
McClure JJ, Zhang C, Inks ES, Peterson YK, Li J, Chou CJ (2016) Development of allosteric hydrazide-containing class I histone deacetylase inhibitors for use in acute myeloid leukemia. J Med Chem 59:9942–9959. https://doi.org/10.1021/acs.jmedchem.6b01385
Wang Y, Stowe RL, Pinello CE et al (2015) Identification of histone deacetylase inhibitors with benzoylhydrazide scaffold that selectively inhibit class I histone deacetylases. Chem Biol 22:273–284. https://doi.org/10.1016/j.chembiol.2014.12.015
West AC, Johnstone RW (2014) New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 124:30–39. https://doi.org/10.1172/JCI69738
King TE Jr, Bradford WZ, Castro-Bernardini S et al (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 370:2083–2092. https://doi.org/10.1056/NEJMoa1402582
Noble PW, Albera C, Bradford WZ et al (2011) Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet 377:1760–1769. https://doi.org/10.1016/S0140-6736(11)60405-4
Maher TM, Corte TJ, Fischer A, Kreuter M, Lederer DJ, Molina-Molina M, Axmann J, Kirchgaessler KU, Samara K, Gilberg F, Cottin V (2020) Pirfenidone in patients with unclassifiable progressive fibrosing interstitial lung disease: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir Med 8:147–157. https://doi.org/10.1016/S2213-2600(19)30341-8
Li C, Rezov V, Joensuu E, Vartiainen V, Ronty M, Yin M, Myllarniemi M, Koli K (2018) Pirfenidone decreases mesothelioma cell proliferation and migration via inhibition of ERK and AKT and regulates mesothelioma tumor microenvironment in vivo. Sci Rep 8:10070. https://doi.org/10.1038/s41598-018-28297-x
Xiao H, Zhang GF, Liao XP, Li XJ, Zhang J, Lin H, Chen Z, Zhang X (2018) Anti-fibrotic effects of pirfenidone by interference with the Hedgehog signalling pathway in patients with systemic sclerosis-associated interstitial lung disease. Int J Rheum Dis 21:477–486. https://doi.org/10.1111/1756-185X.13247
Jeng KS, Jeng CJ, Sheen IS, Wu SH, Lu SJ, Wang CH, Chang CF (2018) Glioma-associated oncogene homolog inhibitors have the potential of suppressing cancer stem cells of breast cancer. Int J Mol Sci 19:1375. https://doi.org/10.3390/ijms19051375
Kohara Y, Haraguchi R, Kitazawa R, Imai Y, Kitazawa S (2020) Hedgehog inhibitors suppress osteoclastogenesis in in vitro cultures, and deletion of Smo in macrophage/osteoclast lineage prevents age-related bone loss. Int J Mol Sci 21:2745. https://doi.org/10.3390/ijms21082745
Zhang F, Hao M, Jin H, Yao Z, Lian N, Wu L, Shao J, Chen A, Zheng S (2017) Canonical Hedgehog signalling regulates hepatic stellate cell-mediated angiogenesis in liver fibrosis. Br J Pharmacol 174:409–423. https://doi.org/10.1111/bph.13701
Zhu J, Wang H, Zhang X, Xie Y (2017) Regulation of angiogenic behaviors by oxytocin receptor through Gli1-indcued transcription of HIF-1alpha in human umbilical vein endothelial cells. Biomed Pharmacother 90:928–934. https://doi.org/10.1016/j.biopha.2017.04.021
Wang J, Huang S, Tian R, Chen J, Gao H, Xie C, Shan Y, Zhang Z, Gu S, Xu M (2018) The protective autophagy activated by GANT-61 in MYCN amplified neuroblastoma cells is mediated by PERK. Oncotarget 9:14413–14427. https://doi.org/10.18632/oncotarget.24214
Ghanbari A, Cheraghzadeh Z, Mahmoudi R, Zibara K, Hosseini E (2019) GLI inhibitors overcome Erlotinib resistance in human pancreatic cancer cells by modulating E-cadherin. J Chemother 31:141–149. https://doi.org/10.1080/1120009X.2019.1584422
Mazumdar T, Devecchio J, Agyeman A, Shi T, Houghton JA (2011) Blocking Hedgehog survival signaling at the level of the GLI genes induces DNA damage and extensive cell death in human colon carcinoma cells. Cancer Res 71:5904–5914. https://doi.org/10.1158/0008-5472.CAN-10-4173
Wang J, Gu S, Huang J, Chen S, Zhang Z, Xu M (2014) Inhibition of autophagy potentiates the efficacy of Gli inhibitor GANT-61 in MYCN-amplified neuroblastoma cells. BMC Cancer 14:768. https://doi.org/10.1186/1471-2407-14-768
Benvenuto M, Masuelli L, De Smaele E et al (2016) In vitro and in vivo inhibition of breast cancer cell growth by targeting the Hedgehog/GLI pathway with SMO (GDC-0449) or GLI (GANT-61) inhibitors. Oncotarget 7:9250–9270. https://doi.org/10.18632/oncotarget.7062
Srivastava RK, Kaylani SZ, Edrees N, Li C, Talwelkar SS, Xu J, Palle K, Pressey JG, Athar M (2014) GLI inhibitor GANT-61 diminishes embryonal and alveolar rhabdomyosarcoma growth by inhibiting Shh/AKT-mTOR axis. Oncotarget 5:12151–12165. https://doi.org/10.18632/oncotarget.2569
Li J, Cai J, Zhao S, Yao K, Sun Y, Li Y, Chen L, Li R, Zhai X, Zhang J, Jiang C (2016) GANT61, a GLI inhibitor, sensitizes glioma cells to the temozolomide treatment. J Exp Clin Cancer Res 35:184. https://doi.org/10.1186/s13046-016-0463-3
Chenna V, Hu C, Khan SR (2014) Synthesis and cytotoxicity studies of Hedgehog enzyme inhibitors SANT-1 and GANT-61 as anticancer agents. J Environ Sci Health A Tox Hazard Subst Environ Eng 49:641–647. https://doi.org/10.1080/10934529.2014.865425
Kramann R, Fleig SV, Schneider RK et al (2015) Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. J Clin Invest 125:2935–2951. https://doi.org/10.1172/JCI74929
Liu Q, Wu Z, Hu D, Zhang L, Wang L, Liu G (2019) Low dose of indomethacin and Hedgehog signaling inhibitor administration synergistically attenuates cartilage damage in osteoarthritis by controlling chondrocytes pyroptosis. Gene 712:143959. https://doi.org/10.1016/j.gene.2019.143959
Trnski D, Gregoric M, Levanat S, Ozretic P, Rincic N, Vidakovic TM, Kalafatic D, Maurac I, Oreskovic S, Sabol M, Musani V (2019) Regulation of survivin isoform expression by GLI proteins in ovarian cancer. Cells 8:128. https://doi.org/10.3390/cells8020128
Li J, Zhang L, Xia Q, Fu J, Zhou Z, Lin F (2017) Hedgehog signaling inhibitor GANT61 induces endoplasmic reticulum stress-mediated protective autophagy in hepatic stellate cells. Biochem Biophys Res Commun 493:487–493. https://doi.org/10.1016/j.bbrc.2017.08.164
Zhu G, Li X, Li J, Zhou W, Chen Z, Fan Y, Jiang Y, Zhao Y, Sun G, Mao W (2020) Arsenic trioxide (ATO) induced degradation of Cyclin D1 sensitized PD-1/PD-L1 checkpoint inhibitor in oral and esophageal squamous cell carcinoma. J Cancer 11:6516–6529. https://doi.org/10.7150/jca.47111
Firkin F, Roncolato F, Ho WK (2015) Dose-adjusted arsenic trioxide for acute promyelocytic leukaemia in chronic renal failure. Eur J Haematol 95:331–335. https://doi.org/10.1111/ejh.12502
Ingallina C, Costa PM, Ghirga F, Klippstein R, Wang JT, Berardozzi S, Hodgins N, Infante P, Pollard SM, Botta B, Al-Jamal KT (2017) Polymeric glabrescione B nanocapsules for passive targeting of Hedgehog-dependent tumor therapy in vitro. Nanomedicine (Lond) 12:711–728. https://doi.org/10.2217/nnm-2016-0388
Oladapo HO, Tarpley M, Sauer SJ et al (2017) Pharmacological targeting of GLI1 inhibits proliferation, tumor emboli formation and in vivo tumor growth of inflammatory breast cancer cells. Cancer Lett 411:136–149. https://doi.org/10.1016/j.canlet.2017.09.033
Muller S, Filippakopoulos P, Knapp S (2011) Bromodomains as therapeutic targets. Expert Rev Mol Med 13:e29. https://doi.org/10.1017/S1462399411001992
Belkina AC, Denis GV (2012) BET domain co-regulators in obesity, inflammation and cancer. Nat Rev Cancer 12:465–477. https://doi.org/10.1038/nrc3256
Fujiwara A, Funaki S, Fukui E, Kimura K, Kanou T, Ose N, Minami M, Shintani Y (2020) Effects of pirfenidone targeting the tumor microenvironment and tumor-stroma interaction as a novel treatment for non-small cell lung cancer. Sci Rep 10:10900. https://doi.org/10.1038/s41598-020-67904-8
Hosoya T, Arai MA, Koyano T, Kowithayakorn T, Ishibashi M (2008) Naturally occurring small-molecule inhibitors of Hedgehog/GLI-mediated transcription. ChemBioChem 9:1082–1092. https://doi.org/10.1002/cbic.200700511
Sun Y, Sheng Q, Cheng Y, Xu Y, Han Y, Wang J, Shi L, Zhao H, Du C (2013) Zerumbone induces apoptosis in human renal cell carcinoma via Gli-1/Bcl-2 pathway. Pharmazie 68:141–145
Lin H, Jackson GA, Lu Y et al (2016) Inhibition of Gli/Hedgehog signaling in prostate cancer cells by “cancer bush” Sutherlandia frutescens extract. Cell Biol Int 40:131–142. https://doi.org/10.1002/cbin.10544
Zhang L, Li L, Jiao M, Wu D, Wu K, Li X, Zhu G, Yang L, Wang X, Hsieh JT, He D (2012) Genistein inhibits the stemness properties of prostate cancer cells through targeting Hedgehog-Gli1 pathway. Cancer Lett 323:48–57. https://doi.org/10.1016/j.canlet.2012.03.037
Mo W, Xu X, Xu L, Wang F, Ke A, Wang X, Guo C (2011) Resveratrol inhibits proliferation and induces apoptosis through the Hedgehog signaling pathway in pancreatic cancer cell. Pancreatology 11:601–609. https://doi.org/10.1159/000333542
Slusarz A, Shenouda NS, Sakla MS, Drenkhahn SK, Narula AS, MacDonald RS, Besch-Williford CL, Lubahn DB (2010) Common botanical compounds inhibit the Hedgehog signaling pathway in prostate cancer. Cancer Res 70:3382–3390. https://doi.org/10.1158/0008-5472.CAN-09-3012
Tang SN, Fu J, Nall D, Rodova M, Shankar S, Srivastava RK (2012) Inhibition of sonic Hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. Int J Cancer 131:30–40. https://doi.org/10.1002/ijc.26323
Arai MA, Uchida K, Sadhu SK, Ahmed F, Ishibashi M (2014) Physalin H from Solanum nigrum as an Hh signaling inhibitor blocks GLI1-DNA-complex formation. Beilstein J Org Chem 10:134–140. https://doi.org/10.3762/bjoc.10.10
Li XY, Zhou LF, Gao LJ, Wei Y, Xu SF, Chen FY, Huang WJ, Tan WF, Ye YP (2018) Cynanbungeigenin C and D, a pair of novel epimers from Cynanchum bungei, suppress Hedgehog pathway-dependent medulloblastoma by blocking signaling at the level of Gli. Cancer Lett 420:195–207. https://doi.org/10.1016/j.canlet.2018.02.005
Arai MA, Tateno C, Hosoya T, Koyano T, Kowithayakorn T, Ishibashi M (2008) Hedgehog/GLI-mediated transcriptional inhibitors from Zizyphus cambodiana. Bioorg Med Chem 16:9420–9424. https://doi.org/10.1016/j.bmc.2008.09.053
Eichenmuller M, Hemmerlein B, von Schweinitz D, Kappler R (2010) Betulinic acid induces apoptosis and inhibits Hedgehog signalling in rhabdomyosarcoma. Br J Cancer 103:43–51. https://doi.org/10.1038/sj.bjc.6605715
Takada Y, Murakami A, Aggarwal BB (2005) Zerumbone abolishes NF-kappaB and IkappaBalpha kinase activation leading to suppression of antiapoptotic and metastatic gene expression, upregulation of apoptosis, and downregulation of invasion. Oncogene 24:6957–6969. https://doi.org/10.1038/sj.onc.1208845
Jorvig JE, Chakraborty A (2015) Zerumbone inhibits growth of hormone refractory prostate cancer cells by inhibiting JAK2/STAT3 pathway and increases paclitaxel sensitivity. Anticancer Drugs 26:160–166. https://doi.org/10.1097/CAD.0000000000000171
Khwairakpam AD, Bordoloi D, Thakur KK, Monisha J, Arfuso F, Sethi G, Mishra S, Kumar AP, Kunnumakkara AB (2018) Possible use of Punica granatum (Pomegranate) in cancer therapy. Pharmacol Res 133:53–64. https://doi.org/10.1016/j.phrs.2018.04.021
Ranaware AM, Banik K, Deshpande V, Padmavathi G, Roy NK, Sethi G, Fan L, Kumar AP, Kunnumakkara AB (2018) Magnolol: a neolignan from the Magnolia family for the prevention and treatment of cancer. Int J Mol Sci 19:2362. https://doi.org/10.3390/ijms19082362
Shanmugam MK, Kannaiyan R, Sethi G (2011) Targeting cell signaling and apoptotic pathways by dietary agents: role in the prevention and treatment of cancer. Nutr Cancer 63:161–173. https://doi.org/10.1080/01635581.2011.523502
Aggarwal BB, Sethi G, Baladandayuthapani V, Krishnan S, Shishodia S (2007) Targeting cell signaling pathways for drug discovery: an old lock needs a new key. J Cell Biochem 102:580–592. https://doi.org/10.1002/jcb.21500
Lee HJ, Wu Q, Li H, Bae GU, Kim AK, Ryu JH (2016) A sesquiterpene lactone from Siegesbeckia glabrescens suppresses Hedgehog/Gli-mediated transcription in pancreatic cancer cells. Oncol Lett 12:2912–2917. https://doi.org/10.3892/ol.2016.4994
Hodon J, Borkova L, Pokorny J, Kazakova A, Urban M (2019) Design and synthesis of pentacyclic triterpene conjugates and their use in medicinal research. Eur J Med Chem 182:111653. https://doi.org/10.1016/j.ejmech.2019.111653
Jiao L, Wang S, Zheng Y, Wang N, Yang B, Wang D, Yang D, Mei W, Zhao Z, Wang Z (2019) Betulinic acid suppresses breast cancer aerobic glycolysis via caveolin-1/NF-kappaB/c-Myc pathway. Biochem Pharmacol 161:149–162. https://doi.org/10.1016/j.bcp.2019.01.016
Yang Y, Xie T, Tian X et al (2020) Betulinic acid-nitrogen heterocyclic derivatives: design, synthesis, and antitumor evaluation in vitro. Molecules 25:948. https://doi.org/10.3390/molecules25040948
Steiner C, Arnould S, Scalbert A, Manach C (2008) Isoflavones and the prevention of breast and prostate cancer: new perspectives opened by nutrigenomics. Br J Nutr 99:ES78-E108. https://doi.org/10.1017/S0007114508965788
Iwasaki M, Inoue M, Otani T, Sasazuki S, Kurahashi N, Miura T, Yamamoto S, Tsugane S, Japan Public Health Center-Based Prospective Study Group (2008) Plasma isoflavone level and subsequent risk of breast cancer among Japanese women: a nested case-control study from the Japan Public Health Center-based prospective study group. J Clin Oncol 26:1677–1683. https://doi.org/10.1200/JCO.2007.13.9964
Valdes K, Morales J, Rodriguez L, Gunther G (2016) Potential use of nanocarriers with pentacyclic triterpenes in cancer treatments. Nanomedicine (Lond) 11:3139–3156. https://doi.org/10.2217/nnm-2016-0251
Katoh M (2019) Genomic testing, tumor microenvironment and targeted therapy of Hedgehog-related human cancers. Clin Sci (Lond) 133:953–970. https://doi.org/10.1042/CS20180845
Infante P, Malfanti A, Quaglio D et al (2021) Glabrescione B delivery by self-assembling micelles efficiently inhibits tumor growth in preclinical models of Hedgehog-dependent medulloblastoma. Cancer Lett 499:220–231. https://doi.org/10.1016/j.canlet.2020.11.028
El-Kady DS, Abd Rabou AA, Tantawy MA, Abdel-Rahman AA, Abdel-Megeed AA, AbdElhalim MM, Elmegeed GA (2019) Synthesis and evaluation of novel cholestanoheterocyclic steroids as anticancer agents. Appl Biochem Biotechnol 188:635–662. https://doi.org/10.1007/s12010-018-02943-6
McGranahan N, Swanton C (2015) Biological and Therapeutic Impact of Intratumor Heterogeneity in Cancer Evolution. Cancer Cell 27(1):15-26. https://doi.org/10.1016/j.ccell.2014.12.001
Acknowledgements
The authors sincerely thank all the participants for their involvement in this article and AJE for editing the manuscript.
Funding
This research was supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LGF20H300001) and the National Natural Science Foundation of China (Grant No. 81803404).
Author information
Authors and Affiliations
Contributions
MZ drafted the first version of the manuscript; XL, LG, YY and MZ revised and edited the manuscript; MZ collected and organized the references; and XL approved the final version of the paper.
Corresponding author
Ethics declarations
Ethics approval
Not applicable.
Consent to participate
Not applicable.
Consent for publication
Authors are responsible for the correctness of the statements in the manuscript. The authors affirm that the participants have consented to publish their data in the journal.
Conflicts of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhang, M., Gao, L., Ye, Y. et al. Advances in glioma-associated oncogene (GLI) inhibitors for cancer therapy. Invest New Drugs 40, 370–388 (2022). https://doi.org/10.1007/s10637-021-01187-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10637-021-01187-2