Skip to main content

Advertisement

Log in

Advances in glioma-associated oncogene (GLI) inhibitors for cancer therapy

  • REVIEW
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The Hedgehog/Glioma-associated oncogene homolog (HH/GLI) signaling pathway regulates self-renewal of rare and highly malignant cancer stem cells, which have been shown to account for the initiation and maintenance of tumor growth as well as for drug resistance, metastatic spread and relapse. As an important component of the Hh signaling pathway, glioma-associated oncogene (GLI) acts as a key signal transmission hub for various signaling pathways in many tumors. Here, we review direct and indirect inhibitors of GLI; summarize the abundant active structurally diverse natural GLI inhibitors; and discuss how to better develop and utilize GLI inhibitors to solve the problem of drug resistance in tumors of interest. In summary, GLI inhibitors will be promising candidates for various cancer treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Structure 1
Structure 2
Structure 3
Structure 4
Structure 5
Structure 6
Structure 7

Similar content being viewed by others

Data availability

All authors ensure that all data and materials as well as software applications and custom code support their published claims and comply with field standards.

Code availability

Not applicable.

References

  1. Robarge KD, Brunton SA, Castanedo GM et al (2009) GDC-0449-a potent inhibitor of the Hedgehog pathway. Bioorg Med Chem Lett 19:5576–5581. https://doi.org/10.1016/j.bmcl.2009.08.049

    Article  CAS  PubMed  Google Scholar 

  2. Pan S, Wu X, Jiang J et al (2010) Discovery of NVP-LDE225, a potent and selective smoothened antagonist. ACS Med Chem Lett 1:130–134. https://doi.org/10.1021/ml1000307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Atwood SX, Sarin KY, Whitson RJ, Li JR, Kim G, Rezaee M, Ally MS, Kim J, Yao C, Chang AL, Oro AE, Tang JY (2015) Smoothened variants explain the majority of drug resistance in basal cell carcinoma. Cancer Cell 27:342–353. https://doi.org/10.1016/j.ccell.2015.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Infante P, Mori M, Alfonsi R et al (2015) Gli1/DNA interaction is a druggable target for Hedgehog-dependent tumors. EMBO J 34:200–217. https://doi.org/10.15252/embj.201489213

  5. Liu Y, Gao S, Zhu J, Zheng Y, Zhang H, Sun H (2018) Dihydroartemisinin induces apoptosis and inhibits proliferation, migration, and invasion in epithelial ovarian cancer via inhibition of the Hedgehog signaling pathway. Cancer Med 7:5704–5715. https://doi.org/10.1002/cam4.1827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sagai T, Amano T, Maeno A, Ajima R, Shiroishi T (2019) SHH signaling mediated by a prechordal and brain enhancer controls forebrain organization. Proc Natl Acad Sci U S A 116:23636–23642. https://doi.org/10.1073/pnas.1901732116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK (2005) Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet 1:e53. https://doi.org/10.1371/journal.pgen.0010053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu A, Wang B, Niswander LA (2005) Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 132:3103–3111. https://doi.org/10.1242/dev.01894

    Article  CAS  PubMed  Google Scholar 

  9. Niewiadomski P, Kong JH, Ahrends R, Ma Y, Humke EW, Khan S, Teruel MN, Novitch BG, Rohatgi R (2014) Gli protein activity is controlled by multisite phosphorylation in vertebrate Hedgehog signaling. Cell Rep 6:168–181. https://doi.org/10.1016/j.celrep.2013.12.003

    Article  CAS  PubMed  Google Scholar 

  10. Gulino A, Di Marcotullio L, Canettieri G, De Smaele E, Screpanti I (2012) Hedgehog/Gli control by ubiquitination/acetylation interplay. Vitam Horm 88:211–227. https://doi.org/10.1016/B978-0-12-394622-5.00009-2

    Article  CAS  PubMed  Google Scholar 

  11. Pan Y, Wang C, Wang B (2009) Phosphorylation of Gli2 by protein kinase A is required for Gli2 processing and degradation and the Sonic Hedgehog-regulated mouse development. Dev Biol 326:177–189. https://doi.org/10.1016/j.ydbio.2008.11.009

    Article  CAS  PubMed  Google Scholar 

  12. Jia J, Amanai K, Wang G, Tang J, Wang B, Jiang J (2002) Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Nature 416:548–552. https://doi.org/10.1038/nature733

    Article  CAS  PubMed  Google Scholar 

  13. Atwood SX, Li M, Lee A, Tang JY, Oro AE (2013) GLI activation by atypical protein kinase C iota/lambda regulates the growth of basal cell carcinomas. Nature 494:484–488. https://doi.org/10.1038/nature11889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zeng X, Ju D (2018) Hedgehog signaling pathway and autophagy in cancer. Int J Mol Sci 19:2279. https://doi.org/10.3390/ijms19082279

    Article  CAS  PubMed Central  Google Scholar 

  15. Kogerman P, Grimm T, Kogerman L, Krause D, Unden AB, Sandstedt B, Toftgard R, Zaphiropoulos PG (1999) Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol 1:312–319. https://doi.org/10.1038/13031

    Article  CAS  PubMed  Google Scholar 

  16. Hui CC, Angers S (2011) Gli proteins in development and disease. Annu Rev Cell Dev Biol 27:513–537. https://doi.org/10.1146/annurev-cellbio-092910-154048

    Article  CAS  PubMed  Google Scholar 

  17. Briscoe J, Therond PP (2013) The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 14:416–429. https://doi.org/10.1038/nrm3598

    Article  CAS  PubMed  Google Scholar 

  18. Bangs F, Anderson KV (2017) Primary cilia and mammalian Hedgehog signaling. Cold Spring Harb Perspect Biol 9:a028175. https://doi.org/10.1101/cshperspect.a028175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aberger F, Hutterer E, Sternberg C, Del Burgo PJ, Hartmann TN (2017) Acute myeloid leukemia - strategies and challenges for targeting oncogenic Hedgehog/GLI signaling. Cell Commun Signal 15:8. https://doi.org/10.1186/s12964-017-0163-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Noubissi FK, Yedjou CG, Spiegelman VS, Tchounwou PB (2018) Cross-talk between Wnt and Hh signaling pathways in the pathology of basal cell carcinoma. Int J Environ Res Public Health 15:1442. https://doi.org/10.3390/ijerph15071442

    Article  CAS  PubMed Central  Google Scholar 

  21. Qin T, Li B, Feng X et al (2018) Abnormally elevated USP37 expression in breast cancer stem cells regulates stemness, epithelial-mesenchymal transition and cisplatin sensitivity. J Exp Clin Cancer Res 37:287. https://doi.org/10.1186/s13046-018-0934-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhateja P, Cherian M, Majumder S, Ramaswamy B (2019) The Hedgehog signaling pathway: a viable target in breast cancer? Cancers (Basel) 11:1126. https://doi.org/10.3390/cancers11081126

    Article  CAS  Google Scholar 

  23. Riobo-Del Galdo NA, Lara Montero A, Wertheimer EV (2019) Role of Hedgehog signaling in breast cancer: pathogenesis and therapeutics. Cells 8:375. https://doi.org/10.3390/cells8040375

    Article  CAS  PubMed Central  Google Scholar 

  24. Xu Y, Song S, Wang Z, Ajani JA (2019) The role of Hedgehog signaling in gastric cancer: molecular mechanisms, clinical potential, and perspective. Cell Commun Signal 17:157. https://doi.org/10.1186/s12964-019-0479-3

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gambichler T, Hartenstein I, Dreissigacker M, Stockfleth E, Stucker M, Schaller J, Schulze HJ, Becker JC, Kafferlein HU, Bruning T, Lang K (2021) Expression of Hedgehog signalling molecules in microcystic adnexal carcinoma. Clin Exp Dermatol 46:1052–1057. https://doi.org/10.1111/ced.14634

    Article  CAS  PubMed  Google Scholar 

  26. Krauss S, Concordet JP, Ingham PW (1993) A functionally conserved homolog of the Drosophila segment polarity gene Hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75:1431–1444. https://doi.org/10.1016/0092-8674(93)90628-4

    Article  CAS  PubMed  Google Scholar 

  27. Mohler J (1988) Requirements for Hedgehog, a segmental polarity gene, in patterning larval and adult cuticle of Drosophila. Genetics 120:1061–1072

    Article  CAS  Google Scholar 

  28. Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, Corbett AH (2007) Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem 282:5101–5105. https://doi.org/10.1074/jbc.R600026200

    Article  CAS  PubMed  Google Scholar 

  29. Han Y, Shi Q, Jiang J (2015) Multisite interaction with Sufu regulates Ci/Gli activity through distinct mechanisms in Hh signal transduction. Proc Natl Acad Sci U S A 112:6383–6388. https://doi.org/10.1073/pnas.1421628112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ruppert JM, Kinzler KW, Wong AJ, Bigner SH, Kao FT, Law ML, Seuanez HN, O’Brien SJ, Vogelstein B (1988) The GLI-Kruppel family of human genes. Mol Cell Biol 8:3104–3113. https://doi.org/10.1128/mcb.8.8.3104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aberger F, Ruiz i Altaba A, (2014) Context-dependent signal integration by the GLI code: the oncogenic load, pathways, modifiers and implications for cancer therapy. Semin Cell Dev Biol 33:93–104. https://doi.org/10.1016/j.semcdb.2014.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pavletich NP, Pabo CO (1993) Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science 261:1701–1707. https://doi.org/10.1126/science.8378770

    Article  CAS  PubMed  Google Scholar 

  33. Jinawath A, Akiyama Y, Sripa B, Yuasa Y (2007) Dual blockade of the Hedgehog and ERK1/2 pathways coordinately decreases proliferation and survival of cholangiocarcinoma cells. J Cancer Res Clin Oncol 133:271–278. https://doi.org/10.1007/s00432-006-0166-9

    Article  CAS  PubMed  Google Scholar 

  34. Nolan-Stevaux O, Lau J, Truitt ML, Chu GC, Hebrok M, Fernandez-Zapico ME, Hanahan D (2009) GLI1 is regulated through smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation. Genes Dev 23:24–36. https://doi.org/10.1101/gad.1753809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bangs FK, Miller P, O’Neill E (2020) Ciliogenesis and Hedgehog signalling are suppressed downstream of KRAS during acinar-ductal metaplasia in mouse. Dis Model Mech 13:dmm044289. https://doi.org/10.1242/dmm.044289

  36. Ji Z, Mei FC, Xie J, Cheng X (2007) Oncogenic KRAS activates Hedgehog signaling pathway in pancreatic cancer cells. J Biol Chem 282:14048–14055. https://doi.org/10.1074/jbc.M611089200

    Article  CAS  PubMed  Google Scholar 

  37. Lauth M, Bergstrom A, Shimokawa T, Tostar U, Jin Q, Fendrich V, Guerra C, Barbacid M, Toftgard R (2010) DYRK1B-dependent autocrine-to-paracrine shift of Hedgehog signaling by mutant RAS. Nat Struct Mol Biol 17:718–725. https://doi.org/10.1038/nsmb.1833

    Article  CAS  PubMed  Google Scholar 

  38. Tang Y, Gholamin S, Schubert S et al (2014) Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nat Med 20:732–740. https://doi.org/10.1038/nm.3613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Long J, Li B, Rodriguez-Blanco J, Pastori C, Volmar CH, Wahlestedt C, Capobianco A, Bai F, Pei XH, Ayad NG, Robbins DJ (2014) The BET bromodomain inhibitor I-BET151 acts downstream of smoothened protein to abrogate the growth of Hedgehog protein-driven cancers. J Biol Chem 289:35494–35502. https://doi.org/10.1074/jbc.M114.595348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yamamoto K, Tateishi K, Kudo Y et al (2016) Stromal remodeling by the BET bromodomain inhibitor JQ1 suppresses the progression of human pancreatic cancer. Oncotarget 7:61469–61484. https://doi.org/10.18632/oncotarget.11129

  41. Huang Y, Nahar S, Nakagawa A et al (2016) Regulation of GLI underlies a role for BET bromodomains in pancreatic cancer growth and the tumor microenvironment. Clin Cancer Res 22:4259–4270. https://doi.org/10.1158/1078-0432.CCR-15-2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Geng Y, Liu J, Xie Y, Jiang H, Zuo K, Li T, Liu Z (2018) Trichostatin A promotes GLI1 degradation and P21 expression in multiple myeloma cells. Cancer Manag Res 10:2905–2914. https://doi.org/10.2147/CMAR.S167330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Canettieri G, Di Marcotullio L, Greco A et al (2010) Histone deacetylase and Cullin3-REN(KCTD11) ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation. Nat Cell Biol 12:132–142. https://doi.org/10.1038/ncb2013

    Article  CAS  PubMed  Google Scholar 

  44. Lauth M, Bergstrom A, Shimokawa T, Toftgard R (2007) Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci U S A 104:8455–8460. https://doi.org/10.1073/pnas.0609699104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tong W, Qiu L, Qi M, Liu J, Hu K, Lin W, Huang Y, Fu J (2018) GANT-61 and GDC-0449 induce apoptosis of prostate cancer stem cells through a GLI-dependent mechanism. J Cell Biochem 119:3641–3652. https://doi.org/10.1002/jcb.26572

    Article  CAS  PubMed  Google Scholar 

  46. Carballo GB, Ribeiro JH, Lopes GPF, Ferrer VP, Dezonne RS, Pereira CM, Spohr T (2020) GANT-61 induces autophagy and apoptosis in glioblastoma cells despite their heterogeneity. Cell Mol Neurobiol 41:1227–1244. https://doi.org/10.1007/s10571-020-00891-6

    Article  CAS  PubMed  Google Scholar 

  47. Harada K, Ohashi R, Naito K, Kanki K (2020) Hedgehog signal inhibitor GANT61 inhibits the malignant behavior of undifferentiated hepatocellular carcinoma cells by targeting non-canonical GLI signaling. Int J Mol Sci 21:3126. https://doi.org/10.3390/ijms21093126

    Article  CAS  PubMed Central  Google Scholar 

  48. Chakrabarti J, Holokai L, Syu L, Steele NG, Chang J, Wang J, Ahmed S, Dlugosz A, Zavros Y (2018) Hedgehog signaling induces PD-L1 expression and tumor cell proliferation in gastric cancer. Oncotarget 9:37439–37457. https://doi.org/10.18632/oncotarget.26473

  49. Chang Y, Chen H, Duan J, Wu W, Le F, Mou F (2020) The inhibitory effect and safety of GANT61 on HeLa cells in nude mice. Exp Mol Pathol 113:104352. https://doi.org/10.1016/j.yexmp.2019.104352

    Article  CAS  PubMed  Google Scholar 

  50. Chang J, Xu W, Liu G, Du X, Li X (2017) Downregulation of Rab23 in prostate cancer inhibits tumor growth in vitro and in vivo. Oncol Res 25:241–248. https://doi.org/10.3727/096504016X14742891049118

    Article  PubMed  PubMed Central  Google Scholar 

  51. Azatyan A, Gallo-Oller G, Diao Y, Selivanova G, Johnsen JI, Zaphiropoulos PG (2019) RITA downregulates Hedgehog-GLI in medulloblastoma and rhabdomyosarcoma via JNK-dependent but p53-independent mechanism. Cancer Lett 442:341–350. https://doi.org/10.1016/j.canlet.2018.11.005

    Article  CAS  PubMed  Google Scholar 

  52. Calcaterra A, Iovine V, Botta B et al (2018) Chemical, computational and functional insights into the chemical stability of the Hedgehog pathway inhibitor GANT61. J Enzyme Inhib Med Chem 33:349–358. https://doi.org/10.1080/14756366.2017.1419221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vlckova K, Reda J, Ondrusova L, Krayem M, Ghanem G, Vachtenheim J (2016) GLI inhibitor GANT61 kills melanoma cells and acts in synergy with obatoclax. Int J Oncol 49:953–960. https://doi.org/10.3892/ijo.2016.3596

    Article  CAS  PubMed  Google Scholar 

  54. Beauchamp EM, Uren A (2012) A new era for an ancient drug: arsenic trioxide and Hedgehog signaling. Vitam Horm 88:333–354. https://doi.org/10.1016/B978-0-12-394622-5.00015-8

    Article  CAS  PubMed  Google Scholar 

  55. Nagai K, Hou L, Li L, Nguyen B, Seale T, Shirley C, Ma H, Levis M, Ghiaur G, Duffield A, Small D (2018) Combination of ATO with FLT3 TKIs eliminates FLT3/ITD+ leukemia cells through reduced expression of FLT3. Oncotarget 9:32885–32899. https://doi.org/10.18632/oncotarget.25972

  56. Porter AC, Fanger GR, Vaillancourt RR (1999) Signal transduction pathways regulated by arsenate and arsenite. Oncogene 18:7794–7802. https://doi.org/10.1038/sj.onc.1203214

    Article  CAS  PubMed  Google Scholar 

  57. Kim J, Lee JJ, Kim J, Gardner D, Beachy PA (2010) Arsenic antagonizes the Hedgehog pathway by preventing ciliary accumulation and reducing stability of the Gli2 transcriptional effector. Proc Natl Acad Sci U S A 107:13432–13437. https://doi.org/10.1073/pnas.1006822107

    Article  PubMed  PubMed Central  Google Scholar 

  58. You M, Varona-Santos J, Singh S, Robbins DJ, Savaraj N, Nguyen DM (2014) Targeting of the Hedgehog signal transduction pathway suppresses survival of malignant pleural mesothelioma cells in vitro. J Thorac Cardiovasc Surg 147:508–516. https://doi.org/10.1016/j.jtcvs.2013.08.035

    Article  CAS  PubMed  Google Scholar 

  59. Huang XB, Shi Y, Wang CS, Wang XD, Cheng J, Che FF (2016) Synergistic inhibitory effect of arsenic trioxide combined with itraconazole on Hedgehog pathway of multiple myeloma NCI-H929 cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi 24:1459–1465. https://doi.org/10.7534/j.issn.1009-2137.2016.05.032

    Article  PubMed  Google Scholar 

  60. Xiong YJ, Guo YJ, Gao YR, Li S, Dai ZH, Dong XQ, Xu YF, Liu CQ, Liu ZY (2015) Synergism between arsenic trioxide and cyclopamine in the inhibition of PC3 cell survival via the Hedgehog signaling pathway. Neoplasma 62:894–904. https://doi.org/10.4149/neo_2015_109

    Article  CAS  PubMed  Google Scholar 

  61. Kozono S, Lin YM, Seo HS et al (2018) Arsenic targets Pin1 and cooperates with retinoic acid to inhibit cancer-driving pathways and tumor-initiating cells. Nat Commun 9:3069. https://doi.org/10.1038/s41467-018-05402-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Litzow MR (2008) Arsenic trioxide. Expert Opin Pharmacother 9:1773–1785. https://doi.org/10.1517/14656566.9.10.1773

    Article  CAS  PubMed  Google Scholar 

  63. Xu X, Wang H, Li H, Hu X, Zhang Y, Guan X, Toy PH, Sun H (2019) S-Dimethylarsino-glutathione (darinaparsin(R)) targets histone H3.3, leading to TRAIL-induced apoptosis in leukemia cells. Chem Commun (Camb) 55:13120–13123. https://doi.org/10.1039/c9cc07605k

    Article  CAS  Google Scholar 

  64. Mann KK, Wallner B, Lossos IS, Miller WH Jr (2009) Darinaparsin: a novel organic arsenical with promising anticancer activity. Expert Opin Investig Drugs 18:1727–1734. https://doi.org/10.1517/13543780903282759

    Article  CAS  PubMed  Google Scholar 

  65. Nielsen TH, Johnson N, Garnier N et al (2013) Monitoring response and resistance to the novel arsenical darinaparsin in an AML patient. Front Pharmacol 4:9. https://doi.org/10.3389/fphar.2013.00009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tian J, Zhao H, Nolley R, Reese SW, Young SR, Li X, Peehl DM, Knox SJ (2012) Darinaparsin: solid tumor hypoxic cytotoxin and radiosensitizer. Clin Cancer Res 18:3366–3376. https://doi.org/10.1158/1078-0432.CCR-11-3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yehiayan L, Stice S, Liu G, Matulis S, Boise LH, Cai Y (2014) Dimethylarsinothioyl glutathione as a metabolite in human multiple myeloma cell lines upon exposure to Darinaparsin. Chem Res Toxicol 27:754–764. https://doi.org/10.1021/tx400386c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Matulis SM, Morales AA, Yehiayan L, Croutch C, Gutman D, Cai Y, Lee KP, Boise LH (2009) Darinaparsin induces a unique cellular response and is active in an arsenic trioxide-resistant myeloma cell line. Mol Cancer Ther 8:1197–1206. https://doi.org/10.1158/1535-7163.MCT-08-1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bansal N, Farley NJ, Wu L, Lewis J, Youssoufian H, Bertino JR (2015) Darinaparsin inhibits prostate tumor-initiating cells and Du145 xenografts and is an inhibitor of Hedgehog signaling. Mol Cancer Ther 14:23–30. https://doi.org/10.1158/1535-7163.MCT-13-1040

    Article  CAS  PubMed  Google Scholar 

  70. Ravi D, Bhalla S, Gartenhaus RB, Crombie J, Kandela I, Sharma J, Mazar A, Evens AM (2014) The novel organic arsenical darinaparsin induces MAPK-mediated and SHP1-dependent cell death in T-cell lymphoma and Hodgkin lymphoma cells and human xenograft models. Clin Cancer Res 20:6023–6033. https://doi.org/10.1158/1078-0432.CCR-14-1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hyman JM, Firestone AJ, Heine VM et al (2009) Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proc Natl Acad Sci U S A 106:14132–14137. https://doi.org/10.1073/pnas.0907134106

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sasaki H, Nishizaki Y, Hui C, Nakafuku M, Kondoh H (1999) Regulation of Gli2 and Gli3 activities by an amino-terminal repression domain: implication of Gli2 and Gli3 as primary mediators of Shh signaling. Development 126:3915–3924

    Article  CAS  Google Scholar 

  73. Riobo NA, Lu K, Ai X, Haines GM, Emerson CP Jr (2006) Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc Natl Acad Sci U S A 103:4505–4510. https://doi.org/10.1073/pnas.0504337103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chenna V, Hu C, Pramanik D, Aftab BT, Karikari C, Campbell NR, Hong SM, Zhao M, Rudek MA, Khan SR, Rudin CM, Maitra A (2012) A polymeric nanoparticle encapsulated small-molecule inhibitor of Hedgehog signaling (NanoHHI) bypasses secondary mutational resistance to Smoothened antagonists. Mol Cancer Ther 11:165–173. https://doi.org/10.1158/1535-7163.MCT-11-0341

    Article  CAS  PubMed  Google Scholar 

  75. Shi X, Liu C, Liu B, Chen J, Wu X, Gong W (2018) JQ1: a novel potential therapeutic target. Pharmazie 73:491–493. https://doi.org/10.1691/ph.2018.8480

    Article  CAS  PubMed  Google Scholar 

  76. Owen DJ, Ornaghi P, Yang JC, Lowe N, Evans PR, Ballario P, Neuhaus D, Filetici P, Travers AA (2000) The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J 19:6141–6149. https://doi.org/10.1093/emboj/19.22.6141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Alvarez-Trotta A, Wang Z, Shersher E, Li B, Long J, Lohse I, Wahlestedt C, El-Rifai W, Robbins DJ, Capobianco AJ (2020) The bromodomain inhibitor IBET-151 attenuates vismodegib-resistant esophageal adenocarcinoma growth through reduction of GLI signaling. Oncotarget 11:3174–3187. https://doi.org/10.18632/oncotarget.27699

  78. Ozdemir BC, Pentcheva-Hoang T, Carstens JL et al (2014) Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25:719–734. https://doi.org/10.1016/j.ccr.2014.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42. https://doi.org/10.1038/nrg2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Parra M, Verdin E (2010) Regulatory signal transduction pathways for class IIa histone deacetylases. Curr Opin Pharmacol 10:454–460. https://doi.org/10.1016/j.coph.2010.04.004

    Article  CAS  PubMed  Google Scholar 

  81. Dhanyamraju PK, Holz PS, Finkernagel F, Fendrich V, Lauth M (2015) Histone deacetylase 6 represents a novel drug target in the oncogenic Hedgehog signaling pathway. Mol Cancer Ther 14:727–739. https://doi.org/10.1158/1535-7163.MCT-14-0481

    Article  CAS  PubMed  Google Scholar 

  82. De Smaele E, Di Marcotullio L, Moretti M et al (2011) Identification and characterization of KCASH2 and KCASH3, 2 novel Cullin3 adaptors suppressing histone deacetylase and Hedgehog activity in medulloblastoma. Neoplasia 13:374–385. https://doi.org/10.1593/neo.101630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mirza AN, Fry MA, Urman NM et al (2017) Combined inhibition of atypical PKC and histone deacetylase 1 is cooperative in basal cell carcinoma treatment. JCI Insight 2:e97071. https://doi.org/10.1172/jci.insight.97071

    Article  PubMed Central  Google Scholar 

  84. Suraweera A, O’Byrne KJ, Richard DJ (2018) Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Front Oncol 8:92. https://doi.org/10.3389/fonc.2018.00092

    Article  PubMed  PubMed Central  Google Scholar 

  85. Falkenberg KJ, Johnstone RW (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13:673–691. https://doi.org/10.1038/nrd4360

    Article  CAS  PubMed  Google Scholar 

  86. McClure JJ, Zhang C, Inks ES, Peterson YK, Li J, Chou CJ (2016) Development of allosteric hydrazide-containing class I histone deacetylase inhibitors for use in acute myeloid leukemia. J Med Chem 59:9942–9959. https://doi.org/10.1021/acs.jmedchem.6b01385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang Y, Stowe RL, Pinello CE et al (2015) Identification of histone deacetylase inhibitors with benzoylhydrazide scaffold that selectively inhibit class I histone deacetylases. Chem Biol 22:273–284. https://doi.org/10.1016/j.chembiol.2014.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. West AC, Johnstone RW (2014) New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 124:30–39. https://doi.org/10.1172/JCI69738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. King TE Jr, Bradford WZ, Castro-Bernardini S et al (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 370:2083–2092. https://doi.org/10.1056/NEJMoa1402582

    Article  CAS  Google Scholar 

  90. Noble PW, Albera C, Bradford WZ et al (2011) Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet 377:1760–1769. https://doi.org/10.1016/S0140-6736(11)60405-4

    Article  CAS  PubMed  Google Scholar 

  91. Maher TM, Corte TJ, Fischer A, Kreuter M, Lederer DJ, Molina-Molina M, Axmann J, Kirchgaessler KU, Samara K, Gilberg F, Cottin V (2020) Pirfenidone in patients with unclassifiable progressive fibrosing interstitial lung disease: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir Med 8:147–157. https://doi.org/10.1016/S2213-2600(19)30341-8

    Article  CAS  PubMed  Google Scholar 

  92. Li C, Rezov V, Joensuu E, Vartiainen V, Ronty M, Yin M, Myllarniemi M, Koli K (2018) Pirfenidone decreases mesothelioma cell proliferation and migration via inhibition of ERK and AKT and regulates mesothelioma tumor microenvironment in vivo. Sci Rep 8:10070. https://doi.org/10.1038/s41598-018-28297-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Xiao H, Zhang GF, Liao XP, Li XJ, Zhang J, Lin H, Chen Z, Zhang X (2018) Anti-fibrotic effects of pirfenidone by interference with the Hedgehog signalling pathway in patients with systemic sclerosis-associated interstitial lung disease. Int J Rheum Dis 21:477–486. https://doi.org/10.1111/1756-185X.13247

    Article  CAS  PubMed  Google Scholar 

  94. Jeng KS, Jeng CJ, Sheen IS, Wu SH, Lu SJ, Wang CH, Chang CF (2018) Glioma-associated oncogene homolog inhibitors have the potential of suppressing cancer stem cells of breast cancer. Int J Mol Sci 19:1375. https://doi.org/10.3390/ijms19051375

    Article  CAS  PubMed Central  Google Scholar 

  95. Kohara Y, Haraguchi R, Kitazawa R, Imai Y, Kitazawa S (2020) Hedgehog inhibitors suppress osteoclastogenesis in in vitro cultures, and deletion of Smo in macrophage/osteoclast lineage prevents age-related bone loss. Int J Mol Sci 21:2745. https://doi.org/10.3390/ijms21082745

    Article  CAS  PubMed Central  Google Scholar 

  96. Zhang F, Hao M, Jin H, Yao Z, Lian N, Wu L, Shao J, Chen A, Zheng S (2017) Canonical Hedgehog signalling regulates hepatic stellate cell-mediated angiogenesis in liver fibrosis. Br J Pharmacol 174:409–423. https://doi.org/10.1111/bph.13701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhu J, Wang H, Zhang X, Xie Y (2017) Regulation of angiogenic behaviors by oxytocin receptor through Gli1-indcued transcription of HIF-1alpha in human umbilical vein endothelial cells. Biomed Pharmacother 90:928–934. https://doi.org/10.1016/j.biopha.2017.04.021

    Article  CAS  PubMed  Google Scholar 

  98. Wang J, Huang S, Tian R, Chen J, Gao H, Xie C, Shan Y, Zhang Z, Gu S, Xu M (2018) The protective autophagy activated by GANT-61 in MYCN amplified neuroblastoma cells is mediated by PERK. Oncotarget 9:14413–14427. https://doi.org/10.18632/oncotarget.24214

  99. Ghanbari A, Cheraghzadeh Z, Mahmoudi R, Zibara K, Hosseini E (2019) GLI inhibitors overcome Erlotinib resistance in human pancreatic cancer cells by modulating E-cadherin. J Chemother 31:141–149. https://doi.org/10.1080/1120009X.2019.1584422

    Article  CAS  PubMed  Google Scholar 

  100. Mazumdar T, Devecchio J, Agyeman A, Shi T, Houghton JA (2011) Blocking Hedgehog survival signaling at the level of the GLI genes induces DNA damage and extensive cell death in human colon carcinoma cells. Cancer Res 71:5904–5914. https://doi.org/10.1158/0008-5472.CAN-10-4173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang J, Gu S, Huang J, Chen S, Zhang Z, Xu M (2014) Inhibition of autophagy potentiates the efficacy of Gli inhibitor GANT-61 in MYCN-amplified neuroblastoma cells. BMC Cancer 14:768. https://doi.org/10.1186/1471-2407-14-768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Benvenuto M, Masuelli L, De Smaele E et al (2016) In vitro and in vivo inhibition of breast cancer cell growth by targeting the Hedgehog/GLI pathway with SMO (GDC-0449) or GLI (GANT-61) inhibitors. Oncotarget 7:9250–9270. https://doi.org/10.18632/oncotarget.7062

  103. Srivastava RK, Kaylani SZ, Edrees N, Li C, Talwelkar SS, Xu J, Palle K, Pressey JG, Athar M (2014) GLI inhibitor GANT-61 diminishes embryonal and alveolar rhabdomyosarcoma growth by inhibiting Shh/AKT-mTOR axis. Oncotarget 5:12151–12165. https://doi.org/10.18632/oncotarget.2569

  104. Li J, Cai J, Zhao S, Yao K, Sun Y, Li Y, Chen L, Li R, Zhai X, Zhang J, Jiang C (2016) GANT61, a GLI inhibitor, sensitizes glioma cells to the temozolomide treatment. J Exp Clin Cancer Res 35:184. https://doi.org/10.1186/s13046-016-0463-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chenna V, Hu C, Khan SR (2014) Synthesis and cytotoxicity studies of Hedgehog enzyme inhibitors SANT-1 and GANT-61 as anticancer agents. J Environ Sci Health A Tox Hazard Subst Environ Eng 49:641–647. https://doi.org/10.1080/10934529.2014.865425

    Article  CAS  PubMed  Google Scholar 

  106. Kramann R, Fleig SV, Schneider RK et al (2015) Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. J Clin Invest 125:2935–2951. https://doi.org/10.1172/JCI74929

    Article  PubMed  PubMed Central  Google Scholar 

  107. Liu Q, Wu Z, Hu D, Zhang L, Wang L, Liu G (2019) Low dose of indomethacin and Hedgehog signaling inhibitor administration synergistically attenuates cartilage damage in osteoarthritis by controlling chondrocytes pyroptosis. Gene 712:143959. https://doi.org/10.1016/j.gene.2019.143959

    Article  CAS  PubMed  Google Scholar 

  108. Trnski D, Gregoric M, Levanat S, Ozretic P, Rincic N, Vidakovic TM, Kalafatic D, Maurac I, Oreskovic S, Sabol M, Musani V (2019) Regulation of survivin isoform expression by GLI proteins in ovarian cancer. Cells 8:128. https://doi.org/10.3390/cells8020128

    Article  CAS  PubMed Central  Google Scholar 

  109. Li J, Zhang L, Xia Q, Fu J, Zhou Z, Lin F (2017) Hedgehog signaling inhibitor GANT61 induces endoplasmic reticulum stress-mediated protective autophagy in hepatic stellate cells. Biochem Biophys Res Commun 493:487–493. https://doi.org/10.1016/j.bbrc.2017.08.164

    Article  CAS  PubMed  Google Scholar 

  110. Zhu G, Li X, Li J, Zhou W, Chen Z, Fan Y, Jiang Y, Zhao Y, Sun G, Mao W (2020) Arsenic trioxide (ATO) induced degradation of Cyclin D1 sensitized PD-1/PD-L1 checkpoint inhibitor in oral and esophageal squamous cell carcinoma. J Cancer 11:6516–6529. https://doi.org/10.7150/jca.47111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Firkin F, Roncolato F, Ho WK (2015) Dose-adjusted arsenic trioxide for acute promyelocytic leukaemia in chronic renal failure. Eur J Haematol 95:331–335. https://doi.org/10.1111/ejh.12502

    Article  CAS  PubMed  Google Scholar 

  112. Ingallina C, Costa PM, Ghirga F, Klippstein R, Wang JT, Berardozzi S, Hodgins N, Infante P, Pollard SM, Botta B, Al-Jamal KT (2017) Polymeric glabrescione B nanocapsules for passive targeting of Hedgehog-dependent tumor therapy in vitro. Nanomedicine (Lond) 12:711–728. https://doi.org/10.2217/nnm-2016-0388

    Article  CAS  Google Scholar 

  113. Oladapo HO, Tarpley M, Sauer SJ et al (2017) Pharmacological targeting of GLI1 inhibits proliferation, tumor emboli formation and in vivo tumor growth of inflammatory breast cancer cells. Cancer Lett 411:136–149. https://doi.org/10.1016/j.canlet.2017.09.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Muller S, Filippakopoulos P, Knapp S (2011) Bromodomains as therapeutic targets. Expert Rev Mol Med 13:e29. https://doi.org/10.1017/S1462399411001992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Belkina AC, Denis GV (2012) BET domain co-regulators in obesity, inflammation and cancer. Nat Rev Cancer 12:465–477. https://doi.org/10.1038/nrc3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fujiwara A, Funaki S, Fukui E, Kimura K, Kanou T, Ose N, Minami M, Shintani Y (2020) Effects of pirfenidone targeting the tumor microenvironment and tumor-stroma interaction as a novel treatment for non-small cell lung cancer. Sci Rep 10:10900. https://doi.org/10.1038/s41598-020-67904-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hosoya T, Arai MA, Koyano T, Kowithayakorn T, Ishibashi M (2008) Naturally occurring small-molecule inhibitors of Hedgehog/GLI-mediated transcription. ChemBioChem 9:1082–1092. https://doi.org/10.1002/cbic.200700511

    Article  CAS  PubMed  Google Scholar 

  118. Sun Y, Sheng Q, Cheng Y, Xu Y, Han Y, Wang J, Shi L, Zhao H, Du C (2013) Zerumbone induces apoptosis in human renal cell carcinoma via Gli-1/Bcl-2 pathway. Pharmazie 68:141–145

    CAS  PubMed  Google Scholar 

  119. Lin H, Jackson GA, Lu Y et al (2016) Inhibition of Gli/Hedgehog signaling in prostate cancer cells by “cancer bush” Sutherlandia frutescens extract. Cell Biol Int 40:131–142. https://doi.org/10.1002/cbin.10544

    Article  PubMed  Google Scholar 

  120. Zhang L, Li L, Jiao M, Wu D, Wu K, Li X, Zhu G, Yang L, Wang X, Hsieh JT, He D (2012) Genistein inhibits the stemness properties of prostate cancer cells through targeting Hedgehog-Gli1 pathway. Cancer Lett 323:48–57. https://doi.org/10.1016/j.canlet.2012.03.037

    Article  CAS  PubMed  Google Scholar 

  121. Mo W, Xu X, Xu L, Wang F, Ke A, Wang X, Guo C (2011) Resveratrol inhibits proliferation and induces apoptosis through the Hedgehog signaling pathway in pancreatic cancer cell. Pancreatology 11:601–609. https://doi.org/10.1159/000333542

    Article  CAS  PubMed  Google Scholar 

  122. Slusarz A, Shenouda NS, Sakla MS, Drenkhahn SK, Narula AS, MacDonald RS, Besch-Williford CL, Lubahn DB (2010) Common botanical compounds inhibit the Hedgehog signaling pathway in prostate cancer. Cancer Res 70:3382–3390. https://doi.org/10.1158/0008-5472.CAN-09-3012

    Article  CAS  PubMed  Google Scholar 

  123. Tang SN, Fu J, Nall D, Rodova M, Shankar S, Srivastava RK (2012) Inhibition of sonic Hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. Int J Cancer 131:30–40. https://doi.org/10.1002/ijc.26323

    Article  CAS  PubMed  Google Scholar 

  124. Arai MA, Uchida K, Sadhu SK, Ahmed F, Ishibashi M (2014) Physalin H from Solanum nigrum as an Hh signaling inhibitor blocks GLI1-DNA-complex formation. Beilstein J Org Chem 10:134–140. https://doi.org/10.3762/bjoc.10.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Li XY, Zhou LF, Gao LJ, Wei Y, Xu SF, Chen FY, Huang WJ, Tan WF, Ye YP (2018) Cynanbungeigenin C and D, a pair of novel epimers from Cynanchum bungei, suppress Hedgehog pathway-dependent medulloblastoma by blocking signaling at the level of Gli. Cancer Lett 420:195–207. https://doi.org/10.1016/j.canlet.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  126. Arai MA, Tateno C, Hosoya T, Koyano T, Kowithayakorn T, Ishibashi M (2008) Hedgehog/GLI-mediated transcriptional inhibitors from Zizyphus cambodiana. Bioorg Med Chem 16:9420–9424. https://doi.org/10.1016/j.bmc.2008.09.053

    Article  CAS  PubMed  Google Scholar 

  127. Eichenmuller M, Hemmerlein B, von Schweinitz D, Kappler R (2010) Betulinic acid induces apoptosis and inhibits Hedgehog signalling in rhabdomyosarcoma. Br J Cancer 103:43–51. https://doi.org/10.1038/sj.bjc.6605715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Takada Y, Murakami A, Aggarwal BB (2005) Zerumbone abolishes NF-kappaB and IkappaBalpha kinase activation leading to suppression of antiapoptotic and metastatic gene expression, upregulation of apoptosis, and downregulation of invasion. Oncogene 24:6957–6969. https://doi.org/10.1038/sj.onc.1208845

    Article  CAS  PubMed  Google Scholar 

  129. Jorvig JE, Chakraborty A (2015) Zerumbone inhibits growth of hormone refractory prostate cancer cells by inhibiting JAK2/STAT3 pathway and increases paclitaxel sensitivity. Anticancer Drugs 26:160–166. https://doi.org/10.1097/CAD.0000000000000171

    Article  CAS  PubMed  Google Scholar 

  130. Khwairakpam AD, Bordoloi D, Thakur KK, Monisha J, Arfuso F, Sethi G, Mishra S, Kumar AP, Kunnumakkara AB (2018) Possible use of Punica granatum (Pomegranate) in cancer therapy. Pharmacol Res 133:53–64. https://doi.org/10.1016/j.phrs.2018.04.021

    Article  CAS  PubMed  Google Scholar 

  131. Ranaware AM, Banik K, Deshpande V, Padmavathi G, Roy NK, Sethi G, Fan L, Kumar AP, Kunnumakkara AB (2018) Magnolol: a neolignan from the Magnolia family for the prevention and treatment of cancer. Int J Mol Sci 19:2362. https://doi.org/10.3390/ijms19082362

    Article  CAS  PubMed Central  Google Scholar 

  132. Shanmugam MK, Kannaiyan R, Sethi G (2011) Targeting cell signaling and apoptotic pathways by dietary agents: role in the prevention and treatment of cancer. Nutr Cancer 63:161–173. https://doi.org/10.1080/01635581.2011.523502

    Article  CAS  PubMed  Google Scholar 

  133. Aggarwal BB, Sethi G, Baladandayuthapani V, Krishnan S, Shishodia S (2007) Targeting cell signaling pathways for drug discovery: an old lock needs a new key. J Cell Biochem 102:580–592. https://doi.org/10.1002/jcb.21500

    Article  CAS  PubMed  Google Scholar 

  134. Lee HJ, Wu Q, Li H, Bae GU, Kim AK, Ryu JH (2016) A sesquiterpene lactone from Siegesbeckia glabrescens suppresses Hedgehog/Gli-mediated transcription in pancreatic cancer cells. Oncol Lett 12:2912–2917. https://doi.org/10.3892/ol.2016.4994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hodon J, Borkova L, Pokorny J, Kazakova A, Urban M (2019) Design and synthesis of pentacyclic triterpene conjugates and their use in medicinal research. Eur J Med Chem 182:111653. https://doi.org/10.1016/j.ejmech.2019.111653

    Article  CAS  PubMed  Google Scholar 

  136. Jiao L, Wang S, Zheng Y, Wang N, Yang B, Wang D, Yang D, Mei W, Zhao Z, Wang Z (2019) Betulinic acid suppresses breast cancer aerobic glycolysis via caveolin-1/NF-kappaB/c-Myc pathway. Biochem Pharmacol 161:149–162. https://doi.org/10.1016/j.bcp.2019.01.016

    Article  CAS  PubMed  Google Scholar 

  137. Yang Y, Xie T, Tian X et al (2020) Betulinic acid-nitrogen heterocyclic derivatives: design, synthesis, and antitumor evaluation in vitro. Molecules 25:948. https://doi.org/10.3390/molecules25040948

    Article  CAS  PubMed Central  Google Scholar 

  138. Steiner C, Arnould S, Scalbert A, Manach C (2008) Isoflavones and the prevention of breast and prostate cancer: new perspectives opened by nutrigenomics. Br J Nutr 99:ES78-E108. https://doi.org/10.1017/S0007114508965788

  139. Iwasaki M, Inoue M, Otani T, Sasazuki S, Kurahashi N, Miura T, Yamamoto S, Tsugane S, Japan Public Health Center-Based Prospective Study Group (2008) Plasma isoflavone level and subsequent risk of breast cancer among Japanese women: a nested case-control study from the Japan Public Health Center-based prospective study group. J Clin Oncol 26:1677–1683. https://doi.org/10.1200/JCO.2007.13.9964

    Article  CAS  Google Scholar 

  140. Valdes K, Morales J, Rodriguez L, Gunther G (2016) Potential use of nanocarriers with pentacyclic triterpenes in cancer treatments. Nanomedicine (Lond) 11:3139–3156. https://doi.org/10.2217/nnm-2016-0251

    Article  CAS  Google Scholar 

  141. Katoh M (2019) Genomic testing, tumor microenvironment and targeted therapy of Hedgehog-related human cancers. Clin Sci (Lond) 133:953–970. https://doi.org/10.1042/CS20180845

    Article  CAS  Google Scholar 

  142. Infante P, Malfanti A, Quaglio D et al (2021) Glabrescione B delivery by self-assembling micelles efficiently inhibits tumor growth in preclinical models of Hedgehog-dependent medulloblastoma. Cancer Lett 499:220–231. https://doi.org/10.1016/j.canlet.2020.11.028

    Article  CAS  PubMed  Google Scholar 

  143. El-Kady DS, Abd Rabou AA, Tantawy MA, Abdel-Rahman AA, Abdel-Megeed AA, AbdElhalim MM, Elmegeed GA (2019) Synthesis and evaluation of novel cholestanoheterocyclic steroids as anticancer agents. Appl Biochem Biotechnol 188:635–662. https://doi.org/10.1007/s12010-018-02943-6

    Article  CAS  PubMed  Google Scholar 

  144. McGranahan N, Swanton C (2015) Biological and Therapeutic Impact of Intratumor Heterogeneity in Cancer Evolution. Cancer Cell 27(1):15-26. https://doi.org/10.1016/j.ccell.2014.12.001

Download references

Acknowledgements

The authors sincerely thank all the participants for their involvement in this article and AJE for editing the manuscript.

Funding

This research was supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LGF20H300001) and the National Natural Science Foundation of China (Grant No. 81803404).

Author information

Authors and Affiliations

Authors

Contributions

MZ drafted the first version of the manuscript; XL, LG, YY and MZ revised and edited the manuscript; MZ collected and organized the references; and XL approved the final version of the paper.

Corresponding author

Correspondence to Xiaoyu Li.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Authors are responsible for the correctness of the statements in the manuscript. The authors affirm that the participants have consented to publish their data in the journal.

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Gao, L., Ye, Y. et al. Advances in glioma-associated oncogene (GLI) inhibitors for cancer therapy. Invest New Drugs 40, 370–388 (2022). https://doi.org/10.1007/s10637-021-01187-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-021-01187-2

Keywords

Navigation