Skip to main content

Advertisement

Log in

Preliminary evaluation of anticancer efficacy of pioglitazone combined with celecoxib for the treatment of non-small cell lung cancer

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Purpose. Among the lung cancer types, non-small cell lung cancer (NSCLC) is prominent and less responsive to chemotherapy. The current chemotherapeutics for NSCLC are associated with several dose-limiting side effects like bone-marrow suppression, neurotoxicity, nephrotoxicity, and ototoxicity, etc. which are causing non-compliance in patients. Many tumors, including breasts, lung, ovarian, etc. overexpress PPAR-γ receptors and COX-2 enzymes, which play a crucial role in tumor progression, angiogenesis, and metastasis. Lack of PPAR-γ activation and overproduction of prostaglandins, result in uncontrolled activation of Ras/Raf/Mek ultimately, NF-κB mediated tumor proliferation. This study aimed to investigate the anti-cancer potential of PPAR-γ agonist Pioglitazone combined with COX-2 inhibitor Celelcoxib in NSCLC. Methods. Sixty adult Balb/C male mice were classified into sham control, disease control, and treatment groups. Mice were treated with Nicotine-derived nitrosamine ketone (NNK) (10 mg/kg), pioglitazone (10 & 20 mg/kg) and celecoxib (25 & 50 mg/kg). Weekly body weight, food intake, mean survival time & % increased life span were determined. Tumor weight and histopathological analysis were performed at the end of the study. Results. The significant tumor reducing potential of pioglitazone combined with celecoxib was observed (p < 0.05). The treatment groups (treated with pioglitazone and celecoxib) showed a remarkable decrease in lung tumor weight, improved life span and mean survival time (p < 0.05). Histopathological studies confirm that treatment groups (treated with pioglitazone and celecoxib) reframed the lung architecture compared to disease control. Conclusion. Preliminary results revealed that pioglitazone adjunacy with celecoxib may be an effective chemo-preventive agent against NNK induce NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70:7–30. https://doi.org/10.3322/caac.21590

    Article  PubMed  Google Scholar 

  2. Khuder SA (2001) Effect of cigarette smoking on major histological types of lung cancer: a meta-analysis. Lung Cancer 31:139–148. https://doi.org/10.1016/S0169-5002(00)00181-1

    Article  CAS  PubMed  Google Scholar 

  3. Morabia A, Wynder EL (1991) Cigarette smoking and lung cancer cell types. Cancer 68:2074–2078. https://doi.org/10.1002/1097-0142(19911101)68:9%3c2074::AID-CNCR2820680939%3e3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  4. Rubins J (2001) Weekly paclitaxel in advanced non-small cell lung cancer. Semin Oncol 28:10–13. https://doi.org/10.1016/S0093-7754(01)90053-3

    Article  PubMed  Google Scholar 

  5. Ricci S (2000) Gemcitabine monotherapy in elderly patients with advanced non-small cell lung cancer A multicenter phase II study. Lung Cancer 27:75–80. https://doi.org/10.1016/S0169-5002(99)00098-7

    Article  CAS  PubMed  Google Scholar 

  6. Florea A-M, Büsselberg D (2011) Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects. Cancers 3:1351–1371. https://doi.org/10.3390/cancers3011351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jin G, Kim MJ, Jeon H-S et al (2010) PTEN mutations and relationship to EGFR, ERBB2, KRAS, and TP53 mutations in non-small cell lung cancers. Lung Cancer 69:279–283. https://doi.org/10.1016/j.lungcan.2009.11.012

    Article  PubMed  Google Scholar 

  8. Riely GJ, Marks J, Pao W (2009) KRAS Mutations in Non-Small Cell Lung Cancer. Proc Am Thorac Soc 6:201–205. https://doi.org/10.1513/pats.200809-107LC

    Article  CAS  PubMed  Google Scholar 

  9. Gridelli C, Peters S, Sgambato A et al (2014) ALK inhibitors in the treatment of advanced NSCLC. Cancer Treat Rev 40:300–306. https://doi.org/10.1016/j.ctrv.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  10. Lehrke M, Lazar MA (2005) The Many Faces of PPARγ. Cell 123:993–999. https://doi.org/10.1016/j.cell.2005.11.026

    Article  CAS  PubMed  Google Scholar 

  11. Elnemr A, Ohta T, Iwata K et al (2000) PPARgamma ligand (thiazolidinedione) induces growth arrest and differentiation markers of human pancreatic cancer cells. Int J Oncol. https://doi.org/10.3892/ijo.17.6.1157

    Article  PubMed  Google Scholar 

  12. Lecarpentier Y, Claes V, Vallée A, Hébert J-L (2017) Interactions between PPAR Gamma and the Canonical Wnt/Beta-Catenin Pathway in Type 2 Diabetes and Colon Cancer. PPAR Res 2017:1–9. https://doi.org/10.1155/2017/5879090

    Article  CAS  Google Scholar 

  13. Straus DS, Pascual G, Li M et al (2000) 15-Deoxy-Delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. Proc Natl Acad Sci 97:4844–4849. https://doi.org/10.1073/pnas.97.9.4844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen F, Wang M, O’Connor JP et al (2003) Phosphorylation of PPAR? via active ERK1/2 leads to its physical association with p65 and inhibition of NF-?? J Cell Biochem 90:732–744. https://doi.org/10.1002/jcb.10668

    Article  CAS  PubMed  Google Scholar 

  15. Wang F, Liu Y, Bi Z (2017) Pioglitazone inhibits growth of human retinoblastoma cells via regulation of NF-κB inflammation signals. J Recept Signal Transduct 37:94–99. https://doi.org/10.3109/10799893.2016.1171341

    Article  CAS  Google Scholar 

  16. Ciaramella V, Sasso FC, Di Liello R et al (2019) Activity and molecular targets of pioglitazone via blockade of proliferation, invasiveness and bioenergetics in human NSCLC. J Exp Clin Cancer Res 38:178. https://doi.org/10.1186/s13046-019-1176-1

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fan P, Abderrahman B, Chai TS et al (2018) Targeting Peroxisome Proliferator-Activated Receptor γ to Increase Estrogen-Induced Apoptosis in Estrogen-Deprived Breast Cancer Cells. Mol Cancer Ther 17:2732–2745. https://doi.org/10.1158/1535-7163.MCT-18-0088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Camp HS, Tafuri SR (1997) Regulation of Peroxisome Proliferator-activated Receptor γ Activity by Mitogen-activated Protein Kinase. J Biol Chem 272:10811–10816. https://doi.org/10.1074/jbc.272.16.10811

    Article  CAS  PubMed  Google Scholar 

  19. Forman BM, Tontonoz P, Chen J et al (1995) 15-Deoxy-Δ12,14-Prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ. Cell 83:803–812. https://doi.org/10.1016/0092-8674(95)90193-0

    Article  CAS  PubMed  Google Scholar 

  20. Bell-Parikh LC, Ide T, Lawson JA et al (2003) Biosynthesis of 15-deoxy-Δ12,14-PGJ2 and the ligation of PPARγ. J Clin Invest 112:945–955. https://doi.org/10.1172/JCI200318012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kliewer SA, Lenhard JM, Willson TM et al (1995) A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation. Cell 83:813–819. https://doi.org/10.1016/0092-8674(95)90194-9

    Article  CAS  PubMed  Google Scholar 

  22. Tsujii M, Kawano S, DuBois RN (1997) Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci U S A 94:3336–3340

    Article  CAS  Google Scholar 

  23. Dohadwala M, Luo J, Zhu L et al (2001) Non-small Cell Lung Cancer Cyclooxygenase-2-dependent Invasion Is Mediated by CD44. J Biol Chem 276:20809–20812. https://doi.org/10.1074/jbc.C100140200

    Article  CAS  PubMed  Google Scholar 

  24. Lee L, Pan C, Cheng C et al (2001) Expression of cyclooxygenase-2 in prostate adenocarcinoma and benign prostatic hyperplasia. Anticancer Res 21:1291–1294

    CAS  PubMed  Google Scholar 

  25. Wolff H, Saukkonen K, Anttila S et al (1998) Expression of Cyclooxygenase-2 in Human Lung Carcinoma. Cancer Res 58:4997

    CAS  PubMed  Google Scholar 

  26. Kulkarni S, Rader JS, Zhang F et al (2001) Cyclooxygenase-2 Is Overexpressed in Human Cervical Cancer. Clin Cancer Res 7:429

    CAS  PubMed  Google Scholar 

  27. Grösch S, Tegeder I, Niederberger E et al (2001) COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. FASEB J 15:1–22. https://doi.org/10.1096/fj.01-0299fje

    Article  CAS  Google Scholar 

  28. Hsu A-L, Ching T-T, Wang D-S et al (2000) The Cyclooxygenase-2 Inhibitor Celecoxib Induces Apoptosis by Blocking Akt Activation in Human Prostate Cancer Cells Independently of Bcl-2. J Biol Chem 275:11397–11403. https://doi.org/10.1074/jbc.275.15.11397

    Article  CAS  PubMed  Google Scholar 

  29. Hu PJ (2004) Chemoprevention of gastric cancer by celecoxib in rats. Gut 53:195–200. https://doi.org/10.1136/gut.2003.021477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harris RE, Alshafie GA, Abou-Issa H, Seibert K (2000) Chemoprevention of breast cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor. Cancer Res 60:2101–2103

    CAS  PubMed  Google Scholar 

  31. Reddy BS, Hirose Y, Lubet R et al (2000) Chemoprevention of Colon Cancer by Specific Cyclooxygenase-2 Inhibitor, Celecoxib, Administered during Different Stages of Carcinogenesis. Cancer Res 60:293

    CAS  PubMed  Google Scholar 

  32. Chiang S-L, Velmurugan BK, Chung C-M et al (2017) Preventive effect of celecoxib use against cancer progression and occurrence of oral squamous cell carcinoma. Sci Rep 7:6235. https://doi.org/10.1038/s41598-017-06673-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Inoue K, Kawahito Y, Tsubouchi Y et al (2001) Expression of peroxisome proliferator-activated receptor (PPAR)-gamma in human lung cancer. Anticancer Res 21:2471–2476

    CAS  PubMed  Google Scholar 

  34. Ravi Kiran Ammu VVV, Garikapati KK, Krishnamurthy PT et al (2019) Possible role of PPAR-γ and COX-2 receptor modulators in the treatment of Non-Small Cell lung carcinoma. Med Hypotheses 124:98–100. https://doi.org/10.1016/j.mehy.2019.02.024

    Article  CAS  PubMed  Google Scholar 

  35. Hase T, Yoshimura R, Mitsuhashi M et al (2002) Expression of peroxisome proliferator-activated receptors in human testicular cancer and growth inhibition by its agonists. Urology 60:542–547. https://doi.org/10.1016/S0090-4295(02)01747-8

    Article  PubMed  Google Scholar 

  36. Eibl G, Wente MN, Reber HA, Hines OJ (2001) Peroxisome Proliferator-Activated Receptor γ Induces Pancreatic Cancer Cell Apoptosis. Biochem Biophys Res Commun 287:522–529. https://doi.org/10.1006/bbrc.2001.5619

    Article  CAS  PubMed  Google Scholar 

  37. DuBois R (1998) The nuclear eicosanoid receptor, PPARgamma, is aberrantly expressed in colonic cancers. Carcinogenesis 19:49–53. https://doi.org/10.1093/carcin/19.1.49

    Article  CAS  PubMed  Google Scholar 

  38. Li M-Y, Kong AWY, Yuan H et al (2012) Pioglitazone prevents smoking carcinogen-induced lung tumor development in mice. Curr Cancer Drug Targets 12:597–606

    Article  CAS  Google Scholar 

  39. Vane JR, Bakhle YS, Botting RM (1998) CYCLOOXYGENASES 1 AND 2. Annu Rev Pharmacol Toxicol 38:97–120. https://doi.org/10.1146/annurev.pharmtox.38.1.97

    Article  CAS  PubMed  Google Scholar 

  40. Dubois RN, Abramson SB, Crofford L et al (1998) Cyclooxygenase in biology and disease. FASEB J Off Publ Fed Am Soc Exp Biol 12:1063–1073

    CAS  Google Scholar 

  41. Tsujii M, DuBois RN (1995) Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 83:493–501

    Article  CAS  Google Scholar 

  42. Tsujii M, Kawano S, Tsuji S et al (1998) Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93:705–716

    Article  CAS  Google Scholar 

  43. Rioux N, Castonguay A Prevention of NNK-induced Lung Tumorigenesis in A/J Mice by Acetylsalicylic Acid and NS-398. 8

Download references

Acknowledgements

I would like to thank Dr. Praveen T.K. for his continuous guidance and support throughout this project. My sincere thanks to Ms. Kusuma Kumari for her suggestions and help in performing the experiment and preparing the manuscript.

Funding

The authors would like to thank the Department of Science and Technology-Fund for Improvement of Science and Technology Infrastructure in Universities and Higher Educational Institutions (DST-FIST), New Delhi, to support our department (Grant No. SR/FST/LSI-574/2013).

Author information

Authors and Affiliations

Authors

Contributions

PTK and AVVVRK generated hypothesis. PTK helped in conceptualization, supervision, validation and proof reading. AVVVRK has conceptualized, carriedout the work, data analysis, writing-original draft; GKK validated and proof-read the manuscript.

Corresponding author

Correspondence to Praveen T. Krishnamurthy.

Ethics declarations

Ethics approval

The experiment was performed with prior approval from the Institutional Animal Ethics Committee (IAEC) (Approval No. JSSCP/OT/M.PHARM/05/18–19).

Conflicts of interest

The authors do not have any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiran, A.V.V.V.R., Kumari, G.K. & Krishnamurthy, P.T. Preliminary evaluation of anticancer efficacy of pioglitazone combined with celecoxib for the treatment of non-small cell lung cancer. Invest New Drugs 40, 1–9 (2022). https://doi.org/10.1007/s10637-021-01158-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-021-01158-7

Keywords

Navigation