Skip to main content

Advertisement

Log in

Selective targeting of the androgen receptor-DNA binding domain by the novel antiandrogen SBF-1 and inhibition of the growth of prostate cancer cells

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Prostate cancers are reliant on androgens for growth and survival. Clinicians and researchers are looking for potent treatments for the resistant forms of prostate cancer; however, a handful of small molecules used in the treatment of castration-resistant prostate cancer have not shown potent effects owing to the mutations in the AR (Androgen Receptor). We used SBF-1, a well-characterized antitumor agent with potent cytotoxic effects against different kinds of cancers and investigated its effect on human prostate cancer. SBF-1 substantially inhibited the proliferation, induced apoptosis, and caused cell cycle arrest in LNCaP and PC3/AR+ prostate cancer cell lines. SBF-1 inhibited the activation of the IGF-1-PNCA pathway, as demonstrated by decreased expression of IGF-1 (insulin-like growth factor 1), proliferating cell nuclear antigen (PCNA), and its downstream Bcl-2 protein. Using microscale thermophoresis (MST) and isothermal titration calorimetry (ITC) assays, we observed a direct binding of SBF-1 to the AR. SBF-1 binds to the AR-DBD (DNA-binding domain) and blocks the transcription of its target gene. SBF-1 demonstrated a potent antitumor effect in vivo; it inhibited AR signaling and suppressed tumor growth in animals. Our study suggests that SBF-1 is an inhibitor of the AR and might be used in the treatment of prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data have been included in the manuscript.

References

  1. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69:7–34. https://doi.org/10.3322/caac.21551

    Article  PubMed  Google Scholar 

  2. Shaffer PL, Jivan A, Dollins DE, Claessens F, Gewirth DT (2004) Structural basis of androgen receptor binding to selective androgen response elements. Proc Natl Acad Sci U S A 101:4758–4763. https://doi.org/10.1073/pnas.0401123101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Claessens F, Denayer S, Van Tilborgh N, et al (2008) Diverse roles of androgen receptor (AR) domains in AR-mediated signaling. Nucl Recept Signal 6:e008. https://doi.org/10.1621/nrs.06008

  4. Guntur AR, Rosen CJ (2013) IGF-1 regulation of key signaling pathways in bone. Bonekey Rep 2. https://doi.org/10.1038/bonekey.2013.171

  5. Kuiper GGJM, Brinkmann AO (1995) Phosphotryptic peptide analysis of the human androgen receptor: detection of a hormone-induced Phosphopeptide. Biochemistry. 34:1851–1857. https://doi.org/10.1021/bi00006a005

    Article  CAS  PubMed  Google Scholar 

  6. Denayer S, Helsen C, Thorrez L, Haelens A, Claessens F (2010) The rules of DNA recognition by the androgen receptor. Mol Endocrinol 24:898–913. https://doi.org/10.1210/me.2009-0310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wong HY, Burghoorn JA, Van Leeuwen M et al (2004) Phosphorylation of androgen receptor isoforms. Biochem J 383:267–276. https://doi.org/10.1042/BJ20040683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schaufele F, Carbonell X, Guerbadot M, Borngraeber S, Chapman MS, Ma AAK, Miner JN, Diamond MI (2005) The structural basis of androgen receptor activation: Intramolecular and intermolecular amino-carboxy interactions. Proc Natl Acad Sci U S A 102:9802–9807. https://doi.org/10.1073/pnas.0408819102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinänen R, Palmberg C, Palotie A, Tammela T, Isola J, Kallioniemi OP (1995) In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 9:401–406. https://doi.org/10.1038/ng0495-401

    Article  CAS  PubMed  Google Scholar 

  10. Linja MJ, Savinainen KJ, Saramäki OR et al (2001) Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 61(9):3550–3555

  11. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, Rosenfeld MG, Sawyers CL (2004) Molecular determinants of resistance to antiandrogen therapy. Nat Med 10:33–39. https://doi.org/10.1038/nm972

    Article  CAS  PubMed  Google Scholar 

  12. Gottlieb B, Beitel LK, Nadarajah A, Paliouras M, Trifiro M (2012) The androgen receptor gene mutations database: 2012 update. Hum Mutat 33:887–894. https://doi.org/10.1002/humu.22046

    Article  CAS  PubMed  Google Scholar 

  13. Beltran H, Yelensky R, Frampton GM, Park K, Downing SR, MacDonald TY, Jarosz M, Lipson D, Tagawa ST, Nanus DM, Stephens PJ, Mosquera JM, Cronin MT, Rubin MA (2013) Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur Urol 63:920–926. https://doi.org/10.1016/j.eururo.2012.08.053

    Article  CAS  PubMed  Google Scholar 

  14. Hara T, Miyazaki J, Araki H et al (2003) Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Res 63(1):149–153

  15. Paul R, Breul J (2000) Antiandrogen withdrawal syndrome associated with prostate cancer therapies: incidence and clinical significance. Drug Saf 23:381–390

    Article  CAS  PubMed  Google Scholar 

  16. Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E, Han M, Partin AW, Vessella RL, Isaacs WB, Bova GS, Luo J (2009) Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 69:16–22. https://doi.org/10.1158/0008-5472.CAN-08-2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Watson PA, Chen YF, Balbas MD, Wongvipat J, Socci ND, Viale A, Kim K, Sawyers CL (2010) Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc Natl Acad Sci U S A 107:16759–16765. https://doi.org/10.1073/pnas.1012443107

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li X, Zhang C, Shi Q, Yang T, Zhu Q, Tian Y, Lu C, Zhang Z, Jiang Z, Zhou H, Wen X, Yang H, Ding X, Liang L, Liu Y, Wang Y, Lu A (2013) Improving the efficacy of conventional therapy by adding andrographolide sulfonate in the treatment of severe hand, foot, and mouth disease: a randomized controlled trial. Evid-Based Complement Altern Med 2013:1–7. https://doi.org/10.1155/2013/316250

    Article  Google Scholar 

  19. Tian X, He Y, Zhou J (2015) Progress in antiandrogen design targeting hormone binding pocket to circumvent mutation based resistance. Front Pharmacol. https://doi.org/10.3389/fphar.2015.00057

  20. Zheng D, Guan Y, Chen X, Xu Y, Chen X, Lei P (2011) Synthesis of cholestane saponins as mimics of OSW-1 and their cytotoxic activities. Bioorg Med Chem Lett 21:3257–3260. https://doi.org/10.1016/j.bmcl.2011.04.030

    Article  CAS  PubMed  Google Scholar 

  21. Maj J, Morzycki JW, Rárová L et al (2011) Synthesis and biological activity of 22-deoxo-23-oxa analogues of saponin OSW-1. J Med Chem 54:3298–3305. https://doi.org/10.1021/jm101648h

    Article  CAS  PubMed  Google Scholar 

  22. Burgett AWG, Poulsen TB, Wangkanont K, Anderson DR, Kikuchi C, Shimada K, Okubo S, Fortner KC, Mimaki Y, Kuroda M, Murphy JP, Schwalb DJ, Petrella EC, Cornella-Taracido I, Schirle M, Tallarico JA, Shair MD (2011) Natural products reveal cancer cell dependence on oxysterol-binding proteins. Nat Chem Biol 7:639–647. https://doi.org/10.1038/nchembio.625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou Y, Garcia-Prieto C, Carney DA, Xu RH, Pelicano H, Kang Y, Yu W, Lou C, Kondo S, Liu J, Harris DM, Estrov Z, Keating MJ, Jin Z, Huang P (2005) OSW-1: a natural compound with potent anticancer activity and a novel mechanism of action. J Natl Cancer Inst 97:1781–1785. https://doi.org/10.1093/jnci/dji404

    Article  CAS  PubMed  Google Scholar 

  24. Shi B, Wu H, Yu B, Wu J (2004) 23-Oxa-analogues of OSW-1: efficient synthesis and extremely potent antitumor activity. Angew Chem Int Ed 43:4324–4327. https://doi.org/10.1002/anie.200454237

    Article  CAS  Google Scholar 

  25. Kubo S, Mimaki Y, Sashida Y et al (1992) Steroidal saponins from the rhizomes of Smilax sieboldii. Phytochemistry. 31:2445–2450. https://doi.org/10.1016/0031-9422(92)83296-B

    Article  CAS  PubMed  Google Scholar 

  26. Li W, Song R, Fang X, Wang L, Chen W, Tang P, Yu B, Sun Y, Xu Q (2012) SBF-1, a synthetic steroidal glycoside, inhibits melanoma growth and metastasis through blocking interaction between PDK1 and AKT3. Biochem Pharmacol 84:172–181. https://doi.org/10.1016/j.bcp.2012.04.006

    Article  CAS  PubMed  Google Scholar 

  27. Elgehama A, Chen W, Pang J, Mi S, Li J, Guo W, Wang X, Gao J, Yu B, Shen Y, Xu Q (2016) Blockade of the interaction between Bcr-Abl and PTB1B by small molecule SBF-to overcome imatinib-resistance of chronic myeloid leukemia cells. Cancer Lett 372:82–88. https://doi.org/10.1016/j.canlet.2015.12.014

    Article  CAS  PubMed  Google Scholar 

  28. Li W, Ouyang Z, Zhang Q, Wang L, Shen Y, Wu X, Gu Y, Shu Y, Yu B, Wu X, Sun Y, Xu Q (2014) SBF-1 exerts strong anticervical cancer effect through inducing endoplasmic reticulum stress-associated cell death via targeting sarco/endoplasmic reticulum Ca2+-ATPase 2. Cell Death Dis 5:e1581. https://doi.org/10.1038/cddis.2014.538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Azeem W, Hellem MR, Olsen JR, Hua Y, Marvyin K, Qu Y, Lin B, Ke X, Øyan AM, Kalland KH (2017) An androgen response element driven reporter assay for the detection of androgen receptor activity in prostate cells. PLoS One 12:e0177861. https://doi.org/10.1371/journal.pone.0177861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun Y, Wu XX, Yin Y, Gong FY, Shen Y, Cai TT, Zhou XB, Wu XF, Xu Q (2010) Novel immunomodulatory properties of cirsilineol through selective inhibition of IFN-γ signaling in a murine model of inflammatory bowel disease. Biochem Pharmacol 79:229–238. https://doi.org/10.1016/j.bcp.2009.08.014

    Article  CAS  PubMed  Google Scholar 

  31. Hellman LM, Fried MG (2007) Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc 2:1849–1861. https://doi.org/10.1038/nprot.2007.249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bird GH, Lajmi AR, Shin JA (2002) Sequence-specific recognition of DNA by hydrophobic, alanine-rich mutants of the basic region/leucine zipper motif investigated by fluorescence anisotropy. Biopolymers. 65:10–20. https://doi.org/10.1002/bip.10205

    Article  CAS  PubMed  Google Scholar 

  33. Skala W, Goettig P, Brandstetter H (2013) Do-it-yourself histidine-tagged bovine enterokinase: a handy member of the protein engineer’s toolbox. J Biotechnol 168:421–425. https://doi.org/10.1016/j.jbiotec.2013.10.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S (2010) Protein-binding assays in biological liquids using microscale thermophoresis. Nat Commun. https://doi.org/10.1038/ncomms1093

  35. Zhou XE, Suino-Powell K, Ludidi PL, McDonnell DP, Xu HE (2010) Expression, purification and primary crystallographic study of human androgen receptor in complex with DNA and coactivator motifs. Protein Expr Purif 71:21–27. https://doi.org/10.1016/j.pep.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  36. Duff MR, Grubbs J, Howell EE (2011) Isothermal titration calorimetry for measuring macromolecule-ligand affinity. J Vis Exp. https://doi.org/10.3791/2796

  37. Veldscholte J, Ris-Stalpers C, Kuiper GGJM, Jenster G, Berrevoets C, Claassen E, van Rooij HCJ, Trapman J, Brinkmann AO, Mulder E (1990) A mutation in the ligand binding domain of the androgen receptor of human INCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun 173:534–540. https://doi.org/10.1016/S0006-291X(05)80067-1

    Article  CAS  PubMed  Google Scholar 

  38. Fenton MA, Shuster TD, Fertig AM et al (1997) Functional characterization of mutant androgen receptors from androgen- independent prostate cancer. Clin Cancer Res 3(8):1383–1388

  39. Taplin ME, Bubley GJ, Ko YJ et al (1999) Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res 59(11):2511–2515

  40. Taplin ME, Bubley GJ, Shuster TD, Frantz ME, Spooner AE, Ogata GK, Keer HN, Balk SP (1995) Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 332:1393–1398. https://doi.org/10.1056/NEJM199505253322101

    Article  CAS  PubMed  Google Scholar 

  41. Yoshida T, Kinoshita H, Segawa T, Nakamura E, Inoue T, Shimizu Y, Kamoto T, Ogawa O (2005) Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient. Cancer Res 65:9611–9616. https://doi.org/10.1158/0008-5472.CAN-05-0817

    Article  CAS  PubMed  Google Scholar 

  42. Watson PA, Arora VK, Sawyers CL (2015) Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer 15:701–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lallous N, Volik SV, Awrey S, Leblanc E, Tse R, Murillo J, Singh K, Azad AA, Wyatt AW, LeBihan S, Chi KN, Gleave ME, Rennie PS, Collins CC, Cherkasov A (2016) Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biol 17:10. https://doi.org/10.1186/s13059-015-0864-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Taplin ME, Rajeshkumar B, Halabi S, Werner CP, Woda BA, Picus J, Stadler W, Hayes DF, Kantoff PW, Vogelzang NJ, Small EJ, Cancer and Leukemia Group B Study 9663 (2003) Androgen receptor mutations in androgen-independent prostate cancer: Cancer and leukemia group B study 9663. J Clin Oncol 21:2673–2678. https://doi.org/10.1200/JCO.2003.11.102

    Article  CAS  PubMed  Google Scholar 

  45. Steketee K, Timmerman L, Ziel-Van Der Made ACJ et al (2002) Broadened ligand responsiveness of androgen receptor mutants obtained by random amino acid substitution of H874 and mutation hot spot T877 in prostate cancer. Int J Cancer 100:309–317. https://doi.org/10.1002/ijc.10495

    Article  CAS  PubMed  Google Scholar 

  46. Litwin MS, Tan HJ (2017) The diagnosis and treatment of prostate cancer: a review. JAMA 317(24):2532–2542. https://doi.org/10.1001/jama.2017.7248

  47. Tan JA, Sharief Y, Hamil KG, Gregory CW, Zang DY, Sar M, Gumerlock PH, deVere White RW, Pretlow TG, Harris SE, Wilson EM, Mohler JL, French FS (1997) Dehydroepiandrosterone activates mutant androgen receptors expressed in the androgen-dependent human prostate cancer xenograft CWR22 and LNCaP cells. Mol Endocrinol 11:450–459. https://doi.org/10.1210/mend.11.4.9906

    Article  CAS  PubMed  Google Scholar 

  48. Korpal M, Korn JM, Gao X, Rakiec DP, Ruddy DA, Doshi S, Yuan J, Kovats SG, Kim S, Cooke VG, Monahan JE, Stegmeier F, Roberts TM, Sellers WR, Zhou W, Zhu P (2013) An F876l mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (Enzalutamide). Cancer Discov 3:1030–1043. https://doi.org/10.1158/2159-8290.CD-13-0142

    Article  CAS  PubMed  Google Scholar 

  49. McKeehan WL, Adams PS, Rosser MP (1984) Direct Mitogenic effects of insulin, epidermal growth factor, glucocorticoid, cholera toxin, unknown pituitary factors and possibly prolactin, but not androgen, on Normal rat prostate epithelial cells in serum-free, Primary Cell Culture. Cancer Res 44(5):1998–2010

  50. Iwamura M, Sluss PM, Casamento JB, Cockett ATK (1993) Insulin-like growth factor I: action and receptor characterization in human prostate cancer cell lines. Prostate. 22:243–252. https://doi.org/10.1002/pros.2990220307

    Article  CAS  PubMed  Google Scholar 

  51. Dalal K, Roshan-Moniri M, Sharma A et al (2014) Selectively targeting the DNA-binding domain of the androgen receptor as a prospective therapy for prostate cancer. J Biol Chem. https://doi.org/10.1074/jbc.M114.553818

  52. Lallous N, Dalal K, Cherkasov A, Rennie PS (2013) Targeting alternative sites on the androgen receptor to treat castration-resistant prostate Cancer. Int J Mol Sci 14:12496–12519

    Article  PubMed  PubMed Central  Google Scholar 

  53. Caboni L, Lloyd DG (2013) Beyond the ligand-binding pocket: targeting alternate sites in nuclear receptors. Med Res Rev 33:1081–1118. https://doi.org/10.1002/med.21275

    Article  CAS  PubMed  Google Scholar 

  54. Gao W, Bohl CE, Dalton JT (2005) Chemistry and structural biology of androgen receptor. Chem Rev 105:3352–3370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mohler JL, Titus MA, Bai S, Kennerley BJ, Lih FB, Tomer KB, Wilson EM (2011) Activation of the androgen receptor by intratumoral bioconversion of androstanediol to dihydrotestosterone in prostate cancer. Cancer Res 71:1486–1496. https://doi.org/10.1158/0008-5472.CAN-10-1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sadi MV, Barrack ER (1991) Determination of growth fraction in advanced prostate cancer by KI-67 immunostaining and its relationship to the time to tumor progression after hormonal therapy. Cancer. 67:3065–3071. https://doi.org/10.1002/1097-0142(19910615)67:12<3065::AID-CNCR2820671222>3.0.CO;2-U

    Article  CAS  PubMed  Google Scholar 

  57. Tilley WD, Lim-Tio SS, Horsfall DJ et al (1994) Detection of discrete androgen receptor epitopes in prostate Cancer by Immunostaining: measurement by color video image analysis. Cancer Res 54(15):4096–4102

  58. Hobisch A, Culig Z, Radmayr C et al (1995) Distant metastases from prostatic carcinoma express androgen receptor protein. Cancer Res 55(14):3068–3072

  59. Hobisch A, Culig Z, Radmayr C, Bartsch G, Klocker H, Hittmair A (1996) Androgen receptor status of lymph node metastases from prostate cancer. Prostate. 28:129–135. https://doi.org/10.1002/(SICI)1097-0045(199602)28:2<129::AID-PROS9>3.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  60. van der Kwast TH, Schalken J, de Winter JAR, van Vroonhoven JCC, Mulder E, Boersma W, Trapman J (1991) Androgen receptors in endocrine-therapy-resistant human prostate cancer. Int J Cancer 48:189–193. https://doi.org/10.1002/ijc.2910480206

    Article  PubMed  Google Scholar 

  61. Gregory CW, Fei X, Ponguta LA, He B, Bill HM, French FS, Wilson EM (2004) Epidermal growth factor increases Coactivation of the androgen receptor in recurrent prostate Cancer. J Biol Chem 279:7119–7130. https://doi.org/10.1074/jbc.M307649200

    Article  CAS  PubMed  Google Scholar 

  62. Culig Z, Hobisch A, Cronauer MV et al (1994) Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 54(20):5474–5478

  63. Zheng W, Wang H, Zeng Z, Lin J, Little PJ, Srivastava LK, Quirion R (2012) The possible role of the Akt signaling pathway in schizophrenia. Brain Res 1470:145–158

    Article  CAS  PubMed  Google Scholar 

  64. Zhu GC, Yu CY, She L et al (2015) Metadherin regulation of vascular endothelial growth factor expression is dependent upon the PI3K/Akt pathway in squamous cell carcinoma of the head and neck. Medicine (Baltimore) 94(6):e502. https://doi.org/10.1097/MD.0000000000000502

  65. Zheng D, Zhu G, Liao S et al (2015) Dysregulation of the PI3K/Akt signaling pathway affects cell cycle and apoptosis of side population cells in nasopharyngeal carcinoma. Oncol Lett 10:182–188. https://doi.org/10.3892/ol.2015.3218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tzivion G, Dobson M, Ramakrishnan G (2011) FoxO transcription factors; regulation by AKT and 14–3-3 proteins. Biochim Biophys Acta - Mol Cell Res 1813(11):1938–1945. https://doi.org/10.1016/j.bbamcr.2011.06.002

  67. Wang F, Liu XQ, Li H, Liang KN, Miner JN, Hong M, Kallel EA, van Oeveren A, Zhi L, Jiang T (2006) Structure of the ligand-binding domain (LBD) of human androgen receptor in complex with a selective modulator LGD2226. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:1067–1071. https://doi.org/10.1107/S1744309106039340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC, Asangani IA, Ateeq B, Chun SY, Siddiqui J, Sam L, Anstett M, Mehra R, Prensner JR, Palanisamy N, Ryslik GA, Vandin F, Raphael BJ, Kunju LP, Rhodes DR, Pienta KJ, Chinnaiyan AM, Tomlins SA (2012) The mutational landscape of lethal castration-resistant prostate cancer. Nature. 487:239–243. https://doi.org/10.1038/nature11125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Robinson D, Van Allen EM, Wu YM et al (2015) Integrative clinical genomics of advanced prostate cancer. Cell. 161:1215–1228. https://doi.org/10.1016/j.cell.2015.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I, Major JE, Wilson M, Socci ND, Lash AE, Heguy A, Eastham JA, Scher HI, Reuter VE, Scardino PT, Sander C, Sawyers CL, Gerald WL (2010) Integrative genomic profiling of human prostate Cancer. Cancer Cell 18:11–22. https://doi.org/10.1016/j.ccr.2010.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Balk SP (2002) Androgen receptor as a target in androgen-independent prostate cancer. Urology. 60:132–138. https://doi.org/10.1016/S0090-4295(02)01593-5

    Article  PubMed  Google Scholar 

  72. Steinkamp MP, O’Mahony OA, Brogley M et al (2009) Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade therapy. Cancer Res 69:4434–4442. https://doi.org/10.1158/0008-5472.CAN-08-3605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ (2008) Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 68:5469–5477. https://doi.org/10.1158/0008-5472.CAN-08-0594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Guo Z, Yang X, Sun F, Jiang R, Linn DE, Chen H, Chen H, Kong X, Melamed J, Tepper CG, Kung HJ, Brodie AMH, Edwards J, Qiu Y (2009) A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 69:2305–2313. https://doi.org/10.1158/0008-5472.CAN-08-3795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sun S, Sprenger CCT, Vessella RL, Haugk K, Soriano K, Mostaghel EA, Page ST, Coleman IM, Nguyen HM, Sun H, Nelson PS, Plymate SR (2010) Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest 120:2715–2730. https://doi.org/10.1172/JCI41824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Andersen RJ, Mawji NR, Wang J, Wang G, Haile S, Myung JK, Watt K, Tam T, Yang YC, Bañuelos CA, Williams DE, McEwan IJ, Wang Y, Sadar MD (2010) Regression of castrate-recurrent prostate Cancer by a small-molecule inhibitor of the amino-terminus domain of the androgen receptor. Cancer Cell 17:535–546. https://doi.org/10.1016/j.ccr.2010.04.027

    Article  CAS  PubMed  Google Scholar 

  77. Zhao Y, Tindall DJ, Huang H (2014) Modulation of androgen receptor by FOXA1 and FOXO1 factors in prostate cancer. Int J Biol Sci 10:614–619. https://doi.org/10.7150/ijbs.8389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim HJ, Park YI, Dong MS (2006) Comparison of prostate cancer cell lines for androgen receptor-mediated reporter gene assays. Toxicol in Vitro 20:1159–1167. https://doi.org/10.1016/j.tiv.2006.03.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Nanjing Sky Technology Co. Ltd. supported this study.

Funding

Nanjing Sky Technology Co., Ltd. Supported this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [Ahmed Elgehama]; Methodology: [Ahmed Elgehama]; formal analysis and investigation: [Ahmed Elgehama]; Writing–original draft preparation: [Ahmed Elgehama]; Writing - review and editing: [Guo Wenjie, Qiang Xu]; Funding acquisition: [Ahmed Elgehama, Qiang Xu]; Resources: [Li Junsun, Biao Yu, Qiang Xu, Ahmed Elgehama]; Supervision: [Qiang Xu].

Corresponding author

Correspondence to Qiang Xu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethics approval

All experiments were performed following the ethical guidelines for scientific practices.

Consent to participate

N/A

Consent for publication

All authors approved the publication of this study.

Code availability

N/A

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Fig. S1

SBF-1 displayed potent cytotoxicity against PC3 cells. (A) 1 × 105 PC3 cells were seeded into 96-well microplates and incubated with various concentrations of SBF-1 for 24 h. Cell viability was determined by MTT assay. (B) Cell adhesive ability was tested toward fibronectin and laminin. (C) PC3 cells were treated with SBF-1 for 6 h at 200 nM final concentration in the presence or absence of DHT (10 nM). The protein levels of AR, pARS515, p-AKTS473, AKT1, IGF-1, FOXO1, p-FOXO1S256, PCNA, and Bcl-2 were determined in the whole lysate by western blot. GAPDH was used as a loading control. (D) PC3 cells were treated in the presence or absence of SBF-1 (200 nM) or DHT (10 nM) for 6 h, and the mRNA levels of IGF-1 and PCNA were determined. (E) PC3 cells were treated with SBF-1 for 6 h at 200 nM final concentration in the presence or absence of DHT (10 nM). The protein levels of AR, pARS515, IGF-1, and PCNA were determined in the whole lysate by western blot. GAPDH was used as a loading control. (F) Annexin V/PI staining determined the percentages of apoptotic cells. (G) The cell cycle was determined by PI staining. Values in A and B were shown as the mean ± SEM. Data in F and G were representative of three independent experiments. (PDF 100 kb)

Fig. S2

Computer analysis of SBF-1 docking to the AR. Autodock vina 4.2 revealed that SBF-1 interacts with AR protein in a location where AR binds to the ARE. (PDF 99 kb)

Fig. S3

SBF-1 blocked the AR-DNA interaction. (A) Schematic diagram of the DNA pull-down assay for IGF-1 and PCNA. (B) Biotinylated IGF-1 and PCNA sequences were pulled down, and the total cell extract was used to determine the binding of AR. Biotin was used as input control. Data were representative of three independent experiments. (PDF 98 kb)

Fig. S4

TCGA Analysis of the AR expression in human prostate cancer. (A) Differential expression of AR in tumor versus healthy tissues of patients from the TCGA database. (B) The high (red) and low (blue) risk groups of TCGA-PRAD patients were stratified based on AR’s expression pattern. Kaplan-Meier curves of AR overexpressed high-risk groups of patients and those low in the TCGA-PRAD cohort. (PDF 375 kb) (PDF 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elgehama, A., Sun, L., Yu, B. et al. Selective targeting of the androgen receptor-DNA binding domain by the novel antiandrogen SBF-1 and inhibition of the growth of prostate cancer cells. Invest New Drugs 39, 442–457 (2021). https://doi.org/10.1007/s10637-020-01050-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-020-01050-w

Keywords

Navigation