Skip to main content

Advertisement

Log in

Downregulation of breast cancer resistance protein by long-term fractionated radiotherapy sensitizes lung adenocarcinoma to SN-38

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Chemotherapy is usually the subsequent treatment for non-small cell lung cancer patients with acquired radioresistance after long-term fractionated radiotherapy. However, few studies have focused on the selection of chemotherapeutic drugs to treat lung adenocarcinoma patients with radioresistance. Our study compared the sensitivity changes of lung adenocarcinoma cells to conventional chemotherapeutic drugs under radioresistant circumstances by using three lung adenocarcinoma cell models, which were irradiated with fractionated X-rays at a total dose of 60 Gy. The results showed that the toxicities of paclitaxel, docetaxel and SN-38 were increased in radioresistant cells. The IC50 values of docetaxel and SN-38 decreased 0 ~ 3 times and 3 ~ 36 times in radioresistant cells, respectively. Notably, the A549 radioresistant cells were approximately 36 times more sensitive to SN-38 than the parental cells. Further results revealed that the downregulation of the efflux transporter BCRP by long-term fractionated irradiation was an important factor contributing to the increased cytotoxicity of SN-38. In addition, the reported miRNAs and transcriptional factors that regulate BCRP did not participate in the downregulation. In conclusion, these results presented important data on the sensitivity changes of lung adenocarcinoma cells to chemotherapeutic drugs after acquiring radioresistance and suggested that irinotecan (the prodrug of SN-38) might be a promising drug candidate for lung adenocarcinoma patients with acquired radioresistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  2. Zappa C, Mousa SA (2016) Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res 5(3):288–300. https://doi.org/10.21037/tlcr.2016.06.07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Skvortsova I, Debbage P, Kumar V, Slwortsov S (2015) Radiation resistance: Cancer stem cells (CSCs) and their enigmatic pro-survival signaling. Semin Cancer Biol 35:39–44. https://doi.org/10.1016/j.semcancer.2015.09.009

    Article  CAS  PubMed  Google Scholar 

  4. Curtin N (2007) Therapeutic potential of drugs to modulate DNA repair in cancer. Expert Opin Ther Targets 11(6):783–799. https://doi.org/10.1517/14728222.11.6.783

    Article  CAS  PubMed  Google Scholar 

  5. Morgan MA, Lawrence TS (2015) Molecular pathways: overcoming radiation resistance by targeting DNA damage response pathways. Clin Cancer Res 21(13):2898–2904. https://doi.org/10.1158/1078-0432.CCR-13-3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tang L, Wei F, Wu Y, He Y, Shi L, Xiong F, Gong Z, Guo C, Li X, Deng H, Cao K, Zhou M, Xiang B, Li X, Li Y, Li G, Xiong W, Zeng Z (2018) Role of metabolism in cancer cell radioresistance and radiosensitization methods. J Exp Clin Cancer Res 37(1):87. https://doi.org/10.1186/s13046-018-0758-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schulz A, Meyer F, Dubrovska A, Borgmann K (2019) Cancer stem cells and Radioresistance: DNA repair and beyond. Cancers 11(6). https://doi.org/10.3390/cancers11060862

  8. Lee DH (2017) Treatments for EGFR-mutant non-small cell lung cancer (NSCLC): the road to a success, paved with failures. Pharmacol Ther 174:1–21. https://doi.org/10.1016/j.pharmthera.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  9. Yoneda K, Imanishi N, Ichiki Y, Tanaka F (2019) Treatment of non-small cell lung Cancer with EGFR-mutations. J UOEH 41(2):153–163. https://doi.org/10.7888/juoeh.41.153

    Article  CAS  PubMed  Google Scholar 

  10. Zhang YL, Yuan JQ, Wang KF, Fu XH, Han XR, Threapleton D, Yang ZY, Mao C, Tang JL (2016) The prevalence of EGFR mutation in patients with non-small cell lung cancer: a systematic review and meta-analysis. Oncotarget 7(48):78985–78993. https://doi.org/10.18632/oncotarget.12587

    Article  PubMed  PubMed Central  Google Scholar 

  11. Han B, Tjulandin S, Hagiwara K, Normanno N, Wulandari L, Laktionov K, Hudoyo A, He Y, Zhang YP, Wang MZ, Liu CY, Ratcliffe M, McCormack R, Reck M (2017) EGFR mutation prevalence in Asia-Pacific and Russian patients with advanced NSCLC of adenocarcinoma and non-adenocarcinoma histology: the IGNITE study. Lung Cancer 113:37–44. https://doi.org/10.1016/j.lungcan.2017.08.021

    Article  PubMed  Google Scholar 

  12. Santivasi WL, Xia F (2014) Ionizing radiation-induced DNA damage, response, and repair. Antioxid Redox Signal 21(2):251–259. https://doi.org/10.1089/ars.2013.5668

    Article  CAS  PubMed  Google Scholar 

  13. Perez-Tomas R (2006) Multidrug resistance: retrospect and prospects in anti-cancer drug treatment. Curr Med Chem 13(16):1859–1876. https://doi.org/10.2174/092986706777585077

    Article  CAS  PubMed  Google Scholar 

  14. Amawi H, Sim HM, Tiwari AK, Ambudkar SV, Shukla S (2019) ABC transporter-mediated multidrug-resistant Cancer. Adv Exp Med Biol 1141:549–580. https://doi.org/10.1007/978-981-13-7647-4_12

    Article  CAS  PubMed  Google Scholar 

  15. Mao Q, Unadkat JD (2015) Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport--an update. AAPS J 17(1):65–82. https://doi.org/10.1208/s12248-014-9668-6

    Article  CAS  PubMed  Google Scholar 

  16. Azimi R, Alaei P, Spezi E, Hui SK (2015) Characterization of an orthovoltage biological irradiator used for radiobiological research. J Radiat Res 56(3):485–492. https://doi.org/10.1093/jrr/rru129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin TY, Chang JT, Wang HM, Chan SH, Chiu CC, Lin CY, Fan KH, Liao CT, Chen IH, Liu TZ, Li HF, Cheng AJ (2010) Proteomics of the radioresistant phenotype in head-and-neck cancer: Gp96 as a novel prediction marker and sensitizing target for radiotherapy. Int J Radiat Oncol Biol Phys 78(1):246–256. https://doi.org/10.1016/j.ijrobp.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  18. Sato K, Shimokawa T, Imai T (2019) Difference in acquired Radioresistance induction between repeated photon and particle irradiation. Front Oncol 9:1213. https://doi.org/10.3389/fonc.2019.01213

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhao YY, Wu Q, Wu ZB, Zhang JJ, Zhu LC, Yang Y, Ma SL, Zhang SR (2018) Microwave hyperthermia promotes caspase3-dependent apoptosis and induces G2/M checkpoint arrest via the ATM pathway in nonsmall cell lung cancer cells. Int J Oncol 53(2):539–550. https://doi.org/10.3892/ijo.2018.4439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang Y, Sun D, Song F, Hu Y, Smith DE, Jiang H (2014) Expression and regulation of the proton-coupled oligopeptide transporter PhT2 by LPS in macrophages and mouse spleen. Mol Pharm 11(6):1880–1888. https://doi.org/10.1021/mp500014r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang YQ, Hu YJ, Li P, Weng YY, Kamada N, Jiang HD, Smith DE (2018) Expression and regulation of proton-coupled oligopeptide transporters in colonic tissue and immune cells of mice. Biochem Pharmacol 148:163–173. https://doi.org/10.1016/j.bcp.2017.12.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Durm G, Hanna N (2017) Second-line chemotherapy and beyond for non-small cell lung Cancer. Hematol Oncol Clin North Am 31(1):71–81. https://doi.org/10.1016/j.hoc.2016.08.002

    Article  PubMed  Google Scholar 

  23. Arunachalam A, Li HJ, Biutoni MA, Camacho R, Cao XT, Zhong YC, Lubiniecki GM, Carbone DP (2018) Real-world treatment patterns, overall survival, and occurrence and costs of adverse events associated with second-line therapies for Medicare patients with advanced non-small-cell lung Cancer. Clin Lung Cancer 19(5):E783–E799. https://doi.org/10.1016/j.cllc.2018.05.016

    Article  PubMed  Google Scholar 

  24. Toth EL, Li H, Dzierlenga AL, Clarke JD, Vildhede A, Goedken M, Cherrington NJ (2018) Gene-by-environment interaction of Bcrp(−/−) and methionine- and choline-deficient diet-induced nonalcoholic Steatohepatitis alters SN-38 disposition. Drug Metab Dispos 46(11):1478–1486. https://doi.org/10.1124/dmd.118.082081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li X, Pan YZ, Seigel GM, Hu ZH, Huang M, Yu AM (2011) Breast cancer resistance protein BCRP/ABCG2 regulatory microRNAs (hsa-miR-328, −519c and -520h) and their differential expression in stem-like ABCG2+ cancer cells. Biochem Pharmacol 81(6):783–792. https://doi.org/10.1016/j.bcp.2010.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haenisch S, Werk AN, Cascorbi I (2014) MicroRNAs and their relevance to ABC transporters. Brit J Clin Pharmaco 77(4):587–596. https://doi.org/10.1111/bcp.12251

    Article  CAS  Google Scholar 

  27. Jia M, Wei Z, Liu P, Zhao X (2016) Silencing of ABCG2 by MicroRNA-3163 inhibits multidrug resistance in retinoblastoma Cancer stem cells. J Korean Med Sci 31(6):836–842. https://doi.org/10.3346/jkms.2016.31.6.836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bircsak KM, Moscovitz JE, Wen X, Archer F, Yuen PYS, Mohammed M, Memon N, Weinberger BI, Saba LM, Vetrano AM, Aleksunes LM (2018) Interindividual regulation of the breast Cancer resistance protein/ABCG2 transporter in term human placentas. Drug Metab Dispos 46(5):619–627. https://doi.org/10.1124/dmd.117.079228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ota S, Ishii G, Goto K, Kubota K, Kim YH, Kojika M, Murata Y, Yamazaki M, Nishiwaki Y, Eguchi K, Ochiai A (2009) Immunohistochemical expression of BCRP and ERCC1 in biopsy specimen predicts survival in advanced non-small-cell lung cancer treated with cisplatin-based chemotherapy. Lung Cancer 64(1):98–104. https://doi.org/10.1016/j.lungcan.2008.07.014

    Article  PubMed  Google Scholar 

  30. Lee SH, Kim H, Hwang JH, Lee HS, Cho JY, Yoon YS, Han HS (2012) Breast cancer resistance protein expression is associated with early recurrence and decreased survival in resectable pancreatic cancer patients. Pathol Int 62(3):167–175. https://doi.org/10.1111/j.1440-1827.2011.02772.x

    Article  PubMed  Google Scholar 

  31. Xie L, Song X, Yu J, Wei L, Song B, Wang X, Lv L (2009) Fractionated irradiation induced radio-resistant esophageal cancer EC109 cells seem to be more sensitive to chemotherapeutic drugs. J Exp Clin Cancer Res 28:68. https://doi.org/10.1186/1756-9966-28-68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Chen Q, Jin S, Deng W, Li S, Tong Q, Chen Y (2012) Up-regulation of P-glycoprotein is involved in the increased paclitaxel resistance in human esophageal cancer radioresistant cells. Scand J Gastroenterol 47(7):802–808. https://doi.org/10.3109/00365521.2012.683042

    Article  CAS  PubMed  Google Scholar 

  33. Kuwahara Y, Roudkenar MH, Suzuki M, Urushihara Y, Fukumoto M, Saito Y, Fukumoto M (2016) The involvement of mitochondrial membrane potential in cross-resistance between radiation and Docetaxel. Int J Radiat Oncol Biol Phys 96(3):556–565. https://doi.org/10.1016/j.ijrobp.2016.07.002

    Article  CAS  PubMed  Google Scholar 

  34. de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S (2018) Individualization of Irinotecan treatment: a review of pharmacokinetics, pharmacodynamics, and Pharmacogenetics. Clin Pharmacokinet 57(10):1229–1254. https://doi.org/10.1007/s40262-018-0644-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fujita D, Saito Y, Nakanishi T, Tamai I (2016) Organic anion transporting polypeptide (OATP)2B1 contributes to gastrointestinal toxicity of anticancer drug SN-38, active metabolite of Irinotecan hydrochloride. Drug Metab Dispos 44(1):1–7. https://doi.org/10.1124/dmd.115.066712

    Article  CAS  PubMed  Google Scholar 

  36. Messersmith WA (2019) NCCN guidelines updates: Management of Metastatic Colorectal Cancer. J Natl Compr Cancer Netw 17(5.5):599–601. https://doi.org/10.6004/jnccn.2019.5014

    Article  Google Scholar 

  37. Kalemkerian GP, Loo BW, Akerley W, Attia A, Bassetti M, Boumber Y, Decker R, Dobelbower MC, Dowlati A, Downey RJ, Florsheim C, Ganti AKP, Grecula JC, Gubens MA, Hann CL, Hayman JA, Heist RS, Koczywas M, Merritt RE, Mohindra N, Molina J, Moran CA, Morgensztern D, Pokharel S, Portnoy DC, Rhodes D, Rusthoven C, Sands J, Santana-Davila R, Williams CC, Hoffmann KG, Hughes M (2018) NCCN guidelines insights: small cell lung Cancer, version 2.2018. J Natl Compr Cancer Netw 16(10):1171–1182. https://doi.org/10.6004/jnccn.2018.0079

    Article  Google Scholar 

  38. Yang XQ, Li CY, Xu MF, Zhao H, Wang D (2015) Comparison of first-line chemotherapy based on irinotecan or other drugs to treat non-small cell lung cancer in stage IIIB/IV: a systematic review and meta-analysis. BMC Cancer 15:949. https://doi.org/10.1186/s12885-015-1978-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Matsubara N, Maemondo M, Inoue A, Ishimoto O, Watanabe K, Sakakibara T, Fukuhara T, Morikawa N, Tanaka M, Sugawara S, Nukiwa T (2013) Phase II study of irinotecan as a third- or fourth-line treatment for advanced non-small cell lung cancer: NJLCG0703. Respir Investig 51(1):28–34. https://doi.org/10.1016/j.resinv.2012.09.004

    Article  PubMed  Google Scholar 

  40. Ohe Y, Ohashi Y, Kubota K, Tamura T, Nakagawa K, Negoro S, Nishiwaki Y, Saijo N, Ariyoshi Y, Fukuoka M (2007) Randomized phase III study of cisplatin plus irinotecan versus carboplatin plus paclitaxel, cisplatin plus gemcitabine, and cisplatin plus vinorelbine for advanced non-small-cell lung cancer: four-arm cooperative study in Japan. Ann Oncol 18(2):317–323. https://doi.org/10.1093/annonc/mdl377

    Article  CAS  PubMed  Google Scholar 

  41. Yamamoto N, Fukuoka M, Negoro SI, Nakagawa K, Saito H, Matsui K, Kawahara M, Senba H, Takada Y, Kudoh S, Nakano T, Katakami N, Sugiura T, Hoso T, Ariyoshi Y (2004) Randomised phase II study of docetaxel/cisplatin vs docetaxel/irinotecan in advanced non-small-cell lung cancer: a West Japan thoracic oncology group study (WJTOG9803). Br J Cancer 90(1):87–92. https://doi.org/10.1038/sj.bjc.6601462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Han JY, Lee DH, Song JE, Lee SY, Kim HY, Kim HT, Lee JS (2008) Randomized phase 2 study of irinotecan plus cisplatin versus gemcitabine plus vinorelbine as first-line chemotherapy with second-line crossover in patients with advanced nonsmall cell lung cancer. Cancer 113(2):388–395. https://doi.org/10.1002/cncr.23582

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Huidi Jiang and Prof. Su Zeng from the College of Pharmaceutical Sciences, Zhejiang University, for their kind advice and help.

Availability of data and material

We declared that materials described in the manuscript, including all relevant raw data, will be freely available to any scientist wishing to use them for non-commercial purposes, without breaching participant confidentiality.

Funding

The work was supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ19H310001, Zhejiang Provincial Medicine and Health Science Foundation (grant No. 2020RC027) and National Natural Scientific Foundation of China (81803631, 81773242).

Author information

Authors and Affiliations

Authors

Contributions

Shirong Zhang, Shenglin Ma and Yuqing Wang conceived and designed the study. Yuqing Wang, Jie Huang, Qiong Wu and Jingjing Zhang performed the experiments. Yuqing Wang wrote the paper. Shirong Zhang, Shenglin Ma and Zhiyuan Ma reviewed and edited the manuscript.

Corresponding authors

Correspondence to Shenglin Ma or Shirong Zhang.

Ethics declarations

Conflict of interest

Yuqing Wang declares that she has no conflict of interest. Jie Huang declares that he has no conflict of interest. Qiong Wu declares that she has no conflict of interest. Jingjing Zhang declares that she has no conflict of interest. Zhiyuan Ma declares that she has no conflict of interest. Shenglin Ma declares that he has no conflict of interest. Shirong Zhang declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Consent to participate

Not applicable.

Consent for publication

Written informed consent for publication was obtained from all participants.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 20.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Huang, J., Wu, Q. et al. Downregulation of breast cancer resistance protein by long-term fractionated radiotherapy sensitizes lung adenocarcinoma to SN-38. Invest New Drugs 39, 458–468 (2021). https://doi.org/10.1007/s10637-020-01003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-020-01003-3

Keywords

Navigation