Skip to main content
Log in

CPBMF65, a synthetic human uridine phosphorylase-1 inhibitor, reduces HepG2 cell proliferation through cell cycle arrest and senescence

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Hepatocellular carcinoma (HCC) is the most prevalent type of tumor among primary liver tumors and is the second highest cause of cancer-related deaths worldwide. Current therapies are controversial, and more research is needed to identify effective treatments. A new synthetic compound, potassium 5-cyano-4-methyl-6-oxo-1,6-dihydropyridine-2-olate (CPBMF65), is a potent inhibitor of the human uridine phosphorylase-1 (hUP1) enzyme, which controls the cell concentration of uridine (Urd). Urd is a natural pyrimidine nucleoside involved in cellular processes, such as RNA synthesis. In addition, it is considered a promising biochemical modulator, as it may reduce the toxicity caused by chemotherapeutics without impairing its anti-tumor activity. Thus, the objective of this study is to evaluate the effects of CPBMF65 on the proliferation of the human hepatocellular carcinoma cell line (HepG2). Cell proliferation, cytotoxicity, apoptosis, senescence, autophagy, intracellular Urd levels, cell cycle arrest, and drug resistance were analyzed. Results demonstrate that, after incubation with CPBMF65, HepG2 cell proliferation decreased, mainly through cell cycle arrest and senescence, increasing the levels of intracellular Urd and maintaining cell proliferation reduced during chronic treatment. In conclusion, results show, for the first time, the ability of a hUP1 inhibitor (CPBMF65) to reduce HepG2 cell proliferation through cell cycle arrest and senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang JD, Hainaut P, Gores GJ et al (2019) A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. https://doi.org/10.1038/s41575-019-0186-y

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sachdeva M (2015) Immunology of hepatocellular carcinoma. World J Hepatol 7:2080. https://doi.org/10.4254/wjh.v7.i17.2080

    Article  PubMed  PubMed Central  Google Scholar 

  3. Attwa MH (2015) Guide for diagnosis and treatment of hepatocellular carcinoma. World J Hepatol 7:1632. doi:https://doi.org/10.4254/wjh.v7.i12.1632

    Article  PubMed  PubMed Central  Google Scholar 

  4. Byam J, Renz J, Millis JM (2013) Liver transplantation for hepatocellular carcinoma. Hepatobiliary Surg Nutr 2:22–30. https://doi.org/10.3978/j.issn.2304-3881.2012.11.03

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sapisochin G, Bruix J (2017) Liver transplantation for hepatocellular carcinoma: outcomes and novel surgical approaches. Nat Rev Gastroenterol Hepatol 14:203–217. https://doi.org/10.1038/nrgastro.2016.193

    Article  PubMed  Google Scholar 

  6. Renck D, MacHado P, Souto AA et al (2013) Design of novel potent inhibitors of human uridine phosphorylase-1: Synthesis, inhibition studies, thermodynamics, and in vitro influence on 5-fluorouracil cytotoxicity. J Med Chem. https://doi.org/10.1021/jm401389u

    Article  PubMed  Google Scholar 

  7. Renck D, Santos AA, Machado P et al (2014) Human uridine phosphorylase-1 inhibitors: A new approach to ameliorate 5-fluorouracil-induced intestinal mucositis. Invest New Drugs. https://doi.org/10.1007/s10637-014-0135-0

    Article  PubMed  Google Scholar 

  8. Pizzorno G, Cao D, Leffert JJ et al (2002) Homeostatic control of uridine and the role of uridine phosphorylase: a biological and clinical update. Biochim Biophys Acta Mol Basis Dis 1587:133–144. https://doi.org/10.1016/S0925-4439(02)00076-5

    Article  CAS  Google Scholar 

  9. van Groeningen CJ, Peters GJ, Pinedo HM (1992) Modulation of fluorouracil toxicity with uridine. Semin Oncol. https://doi.org/10.5555/uri:pii:009377549290077E

    Article  PubMed  Google Scholar 

  10. Leyva A, van Groeningen CJ, Kraal I et al (1984) Phase I and pharmacokinetic studies of high-dose uridine intended for rescue from 5-fluorouracil toxicity. Cancer Res 44:5928–5933

    CAS  PubMed  Google Scholar 

  11. Haute GV, Caberlon E, Squizani E et al (2015) Gallic acid reduces the effect of LPS on apoptosis and inhibits the formation of neutrophil extracellular traps. Toxicol Vitr. https://doi.org/10.1016/j.tiv.2015.10.005

    Article  Google Scholar 

  12. Strober W (2015) Trypan Blue Exclusion Test of Cell Viability. In: Curr. Protoc. Immunol. Wiley, Hoboken, p A3.B.1-A3.B.3

  13. Krause GC, Lima KG, Levorse V et al (2019) Exenatide induces autophagy and prevents the cell regrowth in HEPG2 cells. EXCLI J. https://doi.org/10.17179/excli2019-1415

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kim TM, Shin SK, Kim TW et al (2012) Elm tree bark extract inhibits HepG2 hepatic cancer cell growth via pro-apoptotic activity. J Vet Sci. https://doi.org/10.4142/jvs.2012.13.1.7

    Article  PubMed  PubMed Central  Google Scholar 

  15. Filippi-Chiela EC, Oliveira MM, Jurkovski B et al (2012) Nuclear morphometric analysis (NMA): Screening of senescence, apoptosis and nuclear irregularities. PLoS One. https://doi.org/10.1371/journal.pone.0042522

    Article  PubMed  PubMed Central  Google Scholar 

  16. ZDANOV S (2006) Establishment of H2O2-induced premature senescence in human fibroblasts concomitant with increased cellular production of H2O2. Ann N Y Acad Sci 1067:210–216. https://doi.org/10.1196/annals.1354.025

    Article  CAS  PubMed  Google Scholar 

  17. Lima KG, Krause GC, da Silva EFG et al (2018) Octyl gallate reduces ATP levels and Ki67 expression leading HepG2 cells to cell cycle arrest and mitochondria-mediated apoptosis. Toxicol Vitr. https://doi.org/10.1016/j.tiv.2017.12.017

    Article  Google Scholar 

  18. Krause GC, Lima KG, Dias HB et al (2017) Liraglutide, a glucagon-like peptide-1 analog, induce autophagy and senescence in HepG2 cells. Eur J Pharmacol. https://doi.org/10.1016/j.ejphar.2017.05.015

    Article  PubMed  Google Scholar 

  19. Khemlina G, Ikeda S, Kurzrock R (2017) The biology of Hepatocellular carcinoma: Implications for genomic and immune therapies. Mol Cancer. https://doi.org/10.1186/s12943-017-0712-x

    Article  PubMed  PubMed Central  Google Scholar 

  20. Donato MT, Tolosa L, Gómez-Lechón MJ (2015) Culture and functional characterization of human hepatoma HepG2 cells. Protoc Vitr Hepatocyte Res. https://doi.org/10.1007/978-1-4939-2074-7_5

    Article  Google Scholar 

  21. Salminen A, Kaarniranta K, Kauppinen A (2013) Beclin 1 interactome controls the crosstalk between apoptosis, autophagy and inflammasome activation: Impact on the aging process. Ageing Res Rev 12:520–534. https://doi.org/10.1016/j.arr.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  22. Pattingre S, Tassa A, Qu X et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. https://doi.org/10.1016/j.cell.2005.07.002

    Article  PubMed  Google Scholar 

  23. Da Silva EFG, Le Catyana Krause G, Lima KG et al (2016) Rapamycin and fructose-1,6-bisphosphate reduce the HEPG2 cell proliferation via increase of free radicals and apoptosis. Oncol Rep. https://doi.org/10.3892/or.2016.5111

    Article  PubMed  Google Scholar 

  24. Suzuki K, Matsubara H (2011) Recent advances in p53 research and cancer treatment. J Biomed Biotechnol 2011:1–7. https://doi.org/10.1155/2011/978312

    Article  CAS  Google Scholar 

  25. Huang R, Xue R, Qu D et al (2017) Prp19 arrests cell cycle via Cdc5L in hepatocellular carcinoma cells. Int J Mol Sci. https://doi.org/10.3390/ijms18040778

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schmidt A, Durgan J, Magalhaes A, Hall A (2007) Rho GTPases regulate PRK2/PKN2 to control entry into mitosis and exit from cytokinesis. EMBO J 26:1624–1636. https://doi.org/10.1038/sj.emboj.7601637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Otto T, Sicinski P (2017) Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer 17:93–115. https://doi.org/10.1038/nrc.2016.138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rundle S, Bradbury A, Drew Y, Curtin N (2017) Targeting the ATR-CHK1 Axis in cancer therapy. Cancers (Basel) 9:41. https://doi.org/10.3390/cancers9050041

    Article  CAS  Google Scholar 

  29. Matheson CJ, Backos DS, Reigan P (2016) Targeting WEE1 Kinase in Cancer. Trends Pharmacol Sci 37:872–881. https://doi.org/10.1016/j.tips.2016.06.006

    Article  CAS  PubMed  Google Scholar 

  30. Collado M, Blasco MA, Serrano M (2007) Cellular senescence in cancer and aging. Cell 130:223–233. https://doi.org/10.1016/j.cell.2007.07.003

    Article  CAS  PubMed  Google Scholar 

  31. Luo Y, Leverson JD (2005) New opportunities in chemosensitization and radiosensitization: modulating the DNA-damage response. Expert Rev Anticancer Ther 5:333–342. https://doi.org/10.1586/14737140.5.2.333

    Article  CAS  PubMed  Google Scholar 

  32. Mills CC, Kolb E, Sampson VB (2018) Development of chemotherapy with cell-cycle inhibitors for adult and pediatric cancer therapy. Cancer Res 78:320–325. https://doi.org/10.1158/0008-5472.CAN-17-2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee Y-H, Chen Y-Y, Yeh Y-L et al (2019) Stilbene compounds inhibit tumor growth by the induction of cellular senescence and the inhibition of telomerase activity. Int J Mol Sci 20:2716. https://doi.org/10.3390/ijms20112716

    Article  CAS  PubMed Central  Google Scholar 

  34. Sampson VB, Vetter NS, Zhang W et al (2016) Integrating mechanisms of response and resistance against the tubulin binding agent Eribulin in preclinical models of osteosarcoma. Oncotarget. https://doi.org/10.18632/oncotarget.13358

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95. https://doi.org/10.1038/nrc2981

    Article  CAS  PubMed  Google Scholar 

  36. Squadrito F, Bitto A, Irrera N et al (2017) Pharmacological Activity and Clinical Use of PDRN. Front Pharmacol. https://doi.org/10.3389/fphar.2017.00224

Download references

Funding

This study was financed, in part, by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brasil. Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Géssica Luana Antunes.

Ethics declarations

Conflict of interest

EFGS, KGL, GCK, GVH, LP, AVC, RBG, BSB, HBD, CL, MCRG, BPC, GLA, LAB, MVFD, PM, and JRO declare no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals, performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, E.F.G., Lima, K.G., Krause, G.C. et al. CPBMF65, a synthetic human uridine phosphorylase-1 inhibitor, reduces HepG2 cell proliferation through cell cycle arrest and senescence. Invest New Drugs 38, 1653–1663 (2020). https://doi.org/10.1007/s10637-020-00941-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-020-00941-2

Keywords

Navigation