Skip to main content

Advertisement

Log in

The structure and regulation of the E3 ubiquitin ligase HUWE1 and its biological functions in cancer

  • Review
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

E3 ligases are a class of critical enzymes that can catalyse the transfer of ubiquitin (Ub) from an E2 enzyme to the substrate and are essential to cellular processes. The E3 ligase HUWE1 (also known as ARF-BP1, HECTH9, HSPC272, Ib772, LASU1, MULE, URE-B1, UREB1, and HECT, UBA and WWE domain-containing E3 ubiquitin protein ligase 1) is encoded by the huwe1 gene. HUWE1 is a key regulator of the DNA damage response, transcription, autophagy, apoptosis and metabolism in a variety of cancers. Due to its pivotal role in conferring substrate specificity, HUWE1 has attracted enormous attention as a promising anticancer drug target. In this review, we indicate the specific molecular structure of HUWE1 and its role in various cellular signalling pathways and highlight new insights into HUWE1 in cancer. Finally, we discuss outstanding questions regarding HUWE1 in oncology and highlight its limitations in drug development and clinical guidance to better define the role of HUWE1 in multiple cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li Y, Xie P, Lu L, Wang J, Diao L, Liu Z, Guo F, He Y, Liu Y, Huang Q, Liang H, Li D, He F (2017) An integrated bioinformatics platform for investigating the human E3 ubiquitin ligase-substrate interaction network. Nat Commun 8(1):347. https://doi.org/10.1038/s41467-017-00299-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen YJ, Wu H, Shen XZ (2016) The ubiquitin-proteasome system and its potential application in hepatocellular carcinoma therapy. Cancer Lett 379(2):245–252. https://doi.org/10.1016/j.canlet.2015.06.023

    Article  CAS  PubMed  Google Scholar 

  3. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82(2):373–428. https://doi.org/10.1152/physrev.00027.2001

    Article  CAS  PubMed  Google Scholar 

  4. Jackl M, Stollmaier C, Strohaker T, Hyz K, Maspero E, Polo S, Wiesner S (2018) Beta-sheet augmentation is a conserved mechanism of priming HECT E3 ligases for ubiquitin ligation. J Mol Biol 430(18 Pt B):3218–3233. https://doi.org/10.1016/j.jmb.2018.06.044

    Article  CAS  PubMed  Google Scholar 

  5. Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137(1):133–145. https://doi.org/10.1016/j.cell.2009.01.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Varshavsky A (2017) The ubiquitin system, autophagy, and regulated protein degradation. Annu Rev Biochem 86:123–128. https://doi.org/10.1146/annurev-biochem-061516-044859

    Article  CAS  PubMed  Google Scholar 

  7. Nakayama KI, Nakayama K (2006) Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 6(5):369–381. https://doi.org/10.1038/nrc1881

    Article  CAS  PubMed  Google Scholar 

  8. Schwechheimer C (2018) NEDD8-its role in the regulation of Cullin-RING ligases. Curr Opin Plant Biol 45(Pt A):112–119. https://doi.org/10.1016/j.pbi.2018.05.017

    Article  CAS  PubMed  Google Scholar 

  9. Ponts N, Saraf A, Chung DW, Harris A, Prudhomme J, Washburn MP, Florens L, Le Roch KG (2011) Unraveling the ubiquitome of the human malaria parasite. J Biol Chem 286(46):40320–40330. https://doi.org/10.1074/jbc.M111.238790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martin P, Ruan J, Furman R, Rutherford S, Allan J, Chen Z, Huang X, DiLiberto M, Chen-Kiang S, Leonard JP (2019) A phase I trial of palbociclib plus bortezomib in previously treated mantle cell lymphoma. Leuk Lymphoma:1–5. https://doi.org/10.1080/10428194.2019.1612062

  11. Ando M, Hoyos V, Yagyu S, Tao W, Ramos CA, Dotti G, Brenner MK, Bouchier-Hayes L (2014) Bortezomib sensitizes non-small cell lung cancer to mesenchymal stromal cell-delivered inducible caspase-9-mediated cytotoxicity. Cancer Gene Ther 21(11):472–482. https://doi.org/10.1038/cgt.2014.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Singha B, Gatla HR, Manna S, Chang TP, Sanacora S, Poltoratsky V, Vancura A, Vancurova I (2014) Proteasome inhibition increases recruitment of IkappaB kinase beta (IKKbeta), S536P-p65, and transcription factor EGR1 to interleukin-8 (IL-8) promoter, resulting in increased IL-8 production in ovarian cancer cells. J Biol Chem 289(5):2687–2700. https://doi.org/10.1074/jbc.M113.502641

    Article  CAS  PubMed  Google Scholar 

  13. Gong L, Yang B, Xu M, Cheng B, Tang X, Zheng P, Jing Y, Wu GJ (2014) Bortezomib-induced apoptosis in cultured pancreatic cancer cells is associated with ceramide production. Cancer Chemother Pharmacol 73(1):69–77. https://doi.org/10.1007/s00280-013-2318-3

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Pham V, Tippin M, Fu D, Rendon R, Song L, Uchio E, Hoang BH, Zi X (2019) Flavokawain B targets protein neddylation for enhancing the anti-prostate cancer effect of Bortezomib via Skp2 degradation. Cell Comm Signal: CCS 17(1):25. https://doi.org/10.1186/s12964-019-0338-2

    Article  CAS  Google Scholar 

  15. Chauhan D, Singh A, Brahmandam M, Podar K, Hideshima T, Richardson P, Munshi N, Palladino MA, Anderson KC (2008) Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma. Blood 111(3):1654–1664. https://doi.org/10.1182/blood-2007-08-105601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen D, Kon N, Li M, Zhang W, Qin J, Gu W (2005) ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 121(7):1071–1083. https://doi.org/10.1016/j.cell.2005.03.037

    Article  CAS  PubMed  Google Scholar 

  17. Choe KN, Nicolae CM, Constantin D, Imamura Kawasawa Y, Delgado-Diaz MR, De S, Freire R, Smits VA, Moldovan GL (2016) HUWE1 interacts with PCNA to alleviate replication stress. EMBO Rep 17(6):874–886. https://doi.org/10.15252/embr.201541685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Welchman RL, Gordon C, Mayer RJ (2005) Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol 6(8):599–609. https://doi.org/10.1038/nrm1700

    Article  CAS  PubMed  Google Scholar 

  19. Vij R, Siegel DS, Jagannath S, Jakubowiak AJ, Stewart AK, McDonagh K, Bahlis N, Belch A, Kunkel LA, Wear S, Wong AF, Wang M (2012) An open-label, single-arm, phase 2 study of single-agent carfilzomib in patients with relapsed and/or refractory multiple myeloma who have been previously treated with bortezomib. Br J Haematol 158(6):739–748. https://doi.org/10.1111/j.1365-2141.2012.09232.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vij R, Wang M, Kaufman JL, Lonial S, Jakubowiak AJ, Stewart AK, Kukreti V, Jagannath S, McDonagh KT, Alsina M, Bahlis NJ, Reu FJ, Gabrail NY, Belch A, Matous JV, Lee P, Rosen P, Sebag M, Vesole DH, Kunkel LA, Wear SM, Wong AF, Orlowski RZ, Siegel DS (2012) An open-label, single-arm, phase 2 (PX-171-004) study of single-agent carfilzomib in bortezomib-naive patients with relapsed and/or refractory multiple myeloma. Blood 119(24):5661–5670. https://doi.org/10.1182/blood-2012-03-414359

    Article  PubMed  PubMed Central  Google Scholar 

  21. Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434. https://doi.org/10.1146/annurev.biochem.78.101807.093809

    Article  CAS  PubMed  Google Scholar 

  22. Rotin D, Kumar S (2009) Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 10(6):398–409. https://doi.org/10.1038/nrm2690

    Article  CAS  PubMed  Google Scholar 

  23. Berndsen CE, Wolberger C (2014) New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol 21(4):301–307. https://doi.org/10.1038/nsmb.2780

    Article  CAS  PubMed  Google Scholar 

  24. Kamadurai HB, Qiu Y, Deng A, Harrison JS, Macdonald C, Actis M, Rodrigues P, Miller DJ, Souphron J, Lewis SM, Kurinov I, Fujii N, Hammel M, Piper R, Kuhlman B, Schulman BA (2013) Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3. eLife 2:e00828. https://doi.org/10.7554/eLife.00828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scheffner M, Nuber U, Huibregtse JM (1995) Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373(6509):81–83. https://doi.org/10.1038/373081a0

    Article  CAS  PubMed  Google Scholar 

  26. Zhang W, Wu KP, Sartori MA, Kamadurai HB, Ordureau A, Jiang C, Mercredi PY, Murchie R, Hu J, Persaud A, Mukherjee M, Li N, Doye A, Walker JR, Sheng Y, Hao Z, Li Y, Brown KR, Lemichez E, Chen J, Tong Y, Harper JW, Moffat J, Rotin D, Schulman BA, Sidhu SS (2016) System-wide modulation of HECT E3 ligases with selective ubiquitin variant probes. Mol Cell 62(1):121–136. https://doi.org/10.1016/j.molcel.2016.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lorenz S (2018) Structural mechanisms of HECT-type ubiquitin ligases. Biol Chem 399(2):127–145. https://doi.org/10.1515/hsz-2017-0184

    Article  CAS  PubMed  Google Scholar 

  28. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C, Dicara D, Ramos AH, Lawrence MS, Cibulskis K, Sivachenko A, Voet D, Saksena G, Stransky N, Onofrio RC, Winckler W, Ardlie K, Wagle N, Wargo J, Chong K, Morton DL, Stemke-Hale K, Chen G, Noble M, Meyerson M, Ladbury JE, Davies MA, Gershenwald JE, Wagner SN, Hoon DS, Schadendorf D, Lander ES, Gabriel SB, Getz G, Garraway LA, Chin L (2012) A landscape of driver mutations in melanoma. Cell 150(2):251–263. https://doi.org/10.1016/j.cell.2012.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Comprehensive molecular characterization of human colon and rectal cancer (2012). Nature 487 (7407):330–337. https://doi.org/10.1038/nature11252

  30. Li L, Martinez SS, Hu W, Liu Z, Tjian R (2015) A specific E3 ligase/deubiquitinase pair modulates TBP protein levels during muscle differentiation. eLife 4:e08536. doi:https://doi.org/10.7554/eLife.08536

  31. King B, Boccalatte F, Moran-Crusio K, Wolf E, Wang J, Kayembe C, Lazaris C, Yu X, Aranda-Orgilles B, Lasorella A, Aifantis I (2016) The ubiquitin ligase Huwe1 regulates the maintenance and lymphoid commitment of hematopoietic stem cells. Nat Immunol 17(11):1312–1321. https://doi.org/10.1038/ni.3559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen LJ, Xu WM, Yang M, Wang K, Chen Y, Huang XJ, Ma QH (2016) HUWE1 plays important role in mouse preimplantation embryo development and the dysregulation is associated with poor embryo development in humans. Sci Rep 6:37928. https://doi.org/10.1038/srep37928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maghames CM, Lobato-Gil S, Perrin A, Trauchessec H, Rodriguez MS, Urbach S, Marin P, Xirodimas DP (2018) NEDDylation promotes nuclear protein aggregation and protects the ubiquitin proteasome system upon proteotoxic stress. Nat Commun 9(1):4376. https://doi.org/10.1038/s41467-018-06365-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bosshard M, Aprigliano R, Gattiker C, Palibrk V, Markkanen E, Backe PH, Pellegrino S, Raymond FL, Froyen G, Altmeyer M, Bjoras M, Dianov GL, van Loon B (2017) Impaired oxidative stress response characterizes HUWE1-promoted X-linked intellectual disability. Sci Rep 7(1):15050. https://doi.org/10.1038/s41598-017-15380-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. The MULE/HUWE1 E3 ubiquitin ligase is a tumor suppressor (2013). Cancer discovery 3 (7):Of32. https://doi.org/10.1158/2159-8290.Cd-rw2013-119

  36. Aqrawi LA, Galtung HK, Guerreiro EM, Ovstebo R, Thiede B, Utheim TP, Chen X, Utheim OA, Palm O, Skarstein K, Jensen JL (2019) Proteomic and histopathological characterisation of sicca subjects and primary Sjogren's syndrome patients reveals promising tear, saliva and extracellular vesicle disease biomarkers. Arthritis Res Ther 21(1):181–114. https://doi.org/10.1186/s13075-019-1961-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sander B, Xu W, Eilers M, Popov N, Lorenz S (2017) A conformational switch regulates the ubiquitin ligase HUWE1. eLife 6. https://doi.org/10.7554/eLife.21036

  38. Zhong Q, Gao W, Du F, Wang X (2005) Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121(7):1085–1095. https://doi.org/10.1016/j.cell.2005.06.009

    Article  CAS  PubMed  Google Scholar 

  39. Huang L, Kinnucan E, Wang G, Beaudenon S, Howley PM, Huibregtse JM, Pavletich NP (1999) Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science (New York, NY) 286(5443):1321–1326. https://doi.org/10.1126/science.286.5443.1321

    Article  CAS  Google Scholar 

  40. Verdecia MA, Joazeiro CA, Wells NJ, Ferrer JL, Bowman ME, Hunter T, Noel JP (2003) Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol Cell 11(1):249–259

    Article  CAS  Google Scholar 

  41. Pandya RK, Partridge JR, Love KR, Schwartz TU, Ploegh HL (2010) A structural element within the HUWE1 HECT domain modulates self-ubiquitination and substrate ubiquitination activities. J Biol Chem 285(8):5664–5673. https://doi.org/10.1074/jbc.M109.051805

    Article  CAS  PubMed  Google Scholar 

  42. Adhikary S, Marinoni F, Hock A, Hulleman E, Popov N, Beier R, Bernard S, Quarto M, Capra M, Goettig S, Kogel U, Scheffner M, Helin K, Eilers M (2005) The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell 123(3):409–421. https://doi.org/10.1016/j.cell.2005.08.016

    Article  CAS  PubMed  Google Scholar 

  43. Yanku Y, Bitman-Lotan E, Zohar Y, Kurant E, Zilke N, Eilers M, Orian A (2018) Drosophila HUWE1 ubiquitin ligase regulates Endoreplication and antagonizes JNK signaling during salivary gland development. Cells 7(10). https://doi.org/10.3390/cells7100151

  44. Zhao X, Heng JI, Guardavaccaro D, Jiang R, Pagano M, Guillemot F, Iavarone A, Lasorella A (2008) The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nat Cell Biol 10(6):643–653. https://doi.org/10.1038/ncb1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao Z, Xu D, Wang Z, Wang L, Han R, Wang Z, Liao L, Chen Y (2018) Hepatic PPARalpha function is controlled by polyubiquitination and proteasome-mediated degradation through the coordinated actions of PAQR3 and HUWE1. Hepatology (Baltimore, Md) 68(1):289–303. https://doi.org/10.1002/hep.29786

    Article  CAS  Google Scholar 

  46. Herold S, Hock A, Herkert B, Berns K, Mullenders J, Beijersbergen R, Bernards R, Eilers M (2008) Miz1 and HectH9 regulate the stability of the checkpoint protein, TopBP1. EMBO J 27(21):2851–2861. https://doi.org/10.1038/emboj.2008.200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Parsons JL, Tait PS, Finch D, Dianova II, Edelmann MJ, Khoronenkova SV, Kessler BM, Sharma RA, McKenna WG, Dianov GL (2009) Ubiquitin ligase ARF-BP1/Mule modulates base excision repair. EMBO J 28(20):3207–3215. https://doi.org/10.1038/emboj.2009.243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee HJ, Li CF, Ruan D, He J, Montal ED, Lorenz S, Girnun GD, Chan CH (2019) Non-proteolytic ubiquitination of hexokinase 2 by HectH9 controls tumor metabolism and cancer stem cell expansion. Nat Commun 10(1):2625. https://doi.org/10.1038/s41467-019-10374-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Escobar-Henriques M, Joaquim M (2019) Mitofusins: disease gatekeepers and hubs in mitochondrial quality control by E3 ligases. Front Physiol 10:517. https://doi.org/10.3389/fphys.2019.00517

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wu HT, Kuo YC, Hung JJ, Huang CH, Chen WY, Chou TY, Chen Y, Chen YJ, Chen YJ, Cheng WC, Teng SC, Wu KJ (2016) K63-polyubiquitinated HAUSP deubiquitinates HIF-1alpha and dictates H3K56 acetylation promoting hypoxia-induced tumour progression. Nat Commun 7:13644. https://doi.org/10.1038/ncomms13644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Markkanen E, van Loon B, Ferrari E, Parsons JL, Dianov GL, Hubscher U (2012) Regulation of oxidative DNA damage repair by DNA polymerase lambda and MutYH by cross-talk of phosphorylation and ubiquitination. Proc Natl Acad Sci U S A 109(2):437–442. https://doi.org/10.1073/pnas.1110449109

    Article  PubMed  Google Scholar 

  52. Forget A, Bihannic L, Cigna SM, Lefevre C, Remke M, Barnat M, Dodier S, Shirvani H, Mercier A, Mensah A, Garcia M, Humbert S, Taylor MD, Lasorella A, Ayrault O (2014) Shh signaling protects Atoh1 from degradation mediated by the E3 ubiquitin ligase Huwe1 in neural precursors. Dev Cell 29(6):649–661. https://doi.org/10.1016/j.devcel.2014.05.014

    Article  CAS  PubMed  Google Scholar 

  53. Zhang J, Kan S, Huang B, Hao Z, Mak TW, Zhong Q (2011) Mule determines the apoptotic response to HDAC inhibitors by targeted ubiquitination and destruction of HDAC2. Genes Dev 25(24):2610–2618. https://doi.org/10.1101/gad.170605.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang D, Sun B, Zhang X, Cheng D, Yu X, Yan L, Li L, An S, Jiang H, Lasorella A, Iavarone A, Zhang S, Zou F, Zhao X (2017) Huwe1 sustains Normal ovarian epithelial cell transformation and tumor growth through the histone H1.3-H19 Cascade. Cancer Res 77(18):4773–4784. https://doi.org/10.1158/0008-5472.Can-16-2597

    Article  CAS  PubMed  Google Scholar 

  55. Atsumi Y, Minakawa Y, Ono M, Dobashi S, Shinohe K, Shinohara A, Takeda S, Takagi M, Takamatsu N, Nakagama H, Teraoka H, Yoshioka K (2015) ATM and SIRT6/SNF2H mediate transient H2AX stabilization when DSBs form by blocking HUWE1 to allow efficient gammaH2AX foci formation. Cell Rep 13(12):2728–2740. https://doi.org/10.1016/j.celrep.2015.11.054

    Article  CAS  PubMed  Google Scholar 

  56. Vaughan L, Tan CT, Chapman A, Nonaka D, Mack NA, Smith D, Booton R, Hurlstone AF, Malliri A (2015) HUWE1 ubiquitylates and degrades the RAC activator TIAM1 promoting cell-cell adhesion disassembly, migration, and invasion. Cell Rep 10(1):88–102. https://doi.org/10.1016/j.celrep.2014.12.012

    Article  CAS  PubMed  Google Scholar 

  57. de Groot RE, Ganji RS, Bernatik O, Lloyd-Lewis B, Seipel K, Sedova K, Zdrahal Z, Dhople VM, Dale TC, Korswagen HC, Bryja V (2014) Huwe1-mediated ubiquitylation of dishevelled defines a negative feedback loop in the Wnt signaling pathway. Science signaling 7 (317):ra26. https://doi.org/10.1126/scisignal.2004985

  58. Hall JR, Kow E, Nevis KR, Lu CK, Luce KS, Zhong Q, Cook JG (2007) Cdc6 stability is regulated by the Huwe1 ubiquitin ligase after DNA damage. Mol Biol Cell 18(9):3340–3350. https://doi.org/10.1091/mbc.e07-02-0173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang X, Lu G, Li L, Yi J, Yan K, Wang Y, Zhu B, Kuang J, Lin M, Zhang S, Shao G (2014) HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin-proteasome pathway. Biochem Biophys Res Commun 444 (4):549–554. doi:https://doi.org/10.1016/j.bbrc.2014.01.075

  60. Noy T, Suad O, Taglicht D, Ciechanover A (2012) HUWE1 ubiquitinates MyoD and targets it for proteasomal degradation. Biochem Biophys Res Commun 418(2):408–413. https://doi.org/10.1016/j.bbrc.2012.01.045

    Article  CAS  PubMed  Google Scholar 

  61. Bernassola F, Karin M, Ciechanover A, Melino G (2008) The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell 14(1):10–21. https://doi.org/10.1016/j.ccr.2008.06.001

    Article  CAS  PubMed  Google Scholar 

  62. Zhang Y, Zhang Y, Xu H (2019) LIMCH1 suppress the growth of lung cancer by interacting with HUWE1 to sustain p53 stability. Gene 712:143963. https://doi.org/10.1016/j.gene.2019.143963

    Article  CAS  PubMed  Google Scholar 

  63. Mandemaker IK, van Cuijk L, Janssens RC, Lans H, Bezstarosti K, Hoeijmakers JH, Demmers JA, Vermeulen W, Marteijn JA (2017) DNA damage-induced histone H1 ubiquitylation is mediated by HUWE1 and stimulates the RNF8-RNF168 pathway. Sci Rep 7(1):15353. https://doi.org/10.1038/s41598-017-15194-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Di Rita A, Peschiaroli A, D’Acunzo P, Strobbe D, Hu Z, Gruber J, Nygaard M, Lambrughi M, Melino G, Papaleo E, Dengjel J, El Alaoui S, Campanella M, Dotsch V, Rogov VV, Strappazzon F, Cecconi F (2018) HUWE1 E3 ligase promotes PINK1/PARKIN-independent mitophagy by regulating AMBRA1 activation via IKKalpha. Nat Commun 9(1):3755. https://doi.org/10.1038/s41467-018-05722-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Comprehensive molecular characterization of gastric adenocarcinoma (2014). Nature 513 (7517):202–209. https://doi.org/10.1038/nature13480

  66. Walker BA, Mavrommatis K, Wardell CP, Ashby TC, Bauer M, Davies FE, Rosenthal A, Wang H, Qu P, Hoering A, Samur M, Towfic F, Ortiz M, Flynt E, Yu Z, Yang Z, Rozelle D, Obenauer J, Trotter M, Auclair D, Keats J, Bolli N, Fulciniti M, Szalat R, Moreau P, Durie B, Stewart AK, Goldschmidt H, Raab MS, Einsele H, Sonneveld P, San Miguel J, Lonial S, Jackson GH, Anderson KC, Avet-Loiseau H, Munshi N, Thakurta A, Morgan GJ (2018) Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood 132(6):587–597. https://doi.org/10.1182/blood-2018-03-840132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lin TP, Li J, Li Q, Li X, Liu C, Zeng N, Huang JM, Chu GC, Lin CH, Zhau HE, Chung LWK, Wu BJ, Shih JC (2018) R1 regulates prostate tumor growth and progression by transcriptional suppression of the E3 ligase HUWE1 to stabilize c-Myc. Molec Cancer Res: MCR 16(12):1940–1951. https://doi.org/10.1158/1541-7786.Mcr-16-0346

    Article  CAS  Google Scholar 

  68. Yang D, Cheng D, Tu Q, Yang H, Sun B, Yan L, Dai H, Luo J, Mao B, Cao Y, Yu X, Jiang H, Zhao X (2018) HUWE1 controls the development of non-small cell lung cancer through down-regulation of p53. Theranostics 8(13):3517–3529. https://doi.org/10.7150/thno.24401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mund T, Lewis MJ, Maslen S, Pelham HR (2014) Peptide and small molecule inhibitors of HECT-type ubiquitin ligases. Proc Natl Acad Sci U S A 111(47):16736–16741. https://doi.org/10.1073/pnas.1412152111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fujita Y, Tinoco R, Li Y, Senft D, Ronai ZA (2019) Ubiquitin ligases in Cancer immunotherapy - balancing antitumor and autoimmunity. Trends Mol Med 25(5):428–443. https://doi.org/10.1016/j.molmed.2019.02.002

    Article  CAS  PubMed  Google Scholar 

  71. Kodama T, Newberg JY, Kodama M, Rangel R, Yoshihara K, Tien JC, Parsons PH, Wu H, Finegold MJ, Copeland NG, Jenkins NA (2016) Transposon mutagenesis identifies genes and cellular processes driving epithelial-mesenchymal transition in hepatocellular carcinoma. Proc Natl Acad Sci U S A 113(24):E3384–E3393. https://doi.org/10.1073/pnas.1606876113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Peter S, Bultinck J, Myant K, Jaenicke LA, Walz S, Muller J, Gmachl M, Treu M, Boehmelt G, Ade CP, Schmitz W, Wiegering A, Otto C, Popov N, Sansom O, Kraut N, Eilers M (2014) Tumor cell-specific inhibition of MYC function using small molecule inhibitors of the HUWE1 ubiquitin ligase. EMBO Mol Med 6(12):1525–1541. https://doi.org/10.15252/emmm.201403927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Myant KB, Cammareri P, Hodder MC, Wills J, Von Kriegsheim A, Gyorffy B, Rashid M, Polo S, Maspero E, Vaughan L, Gurung B, Barry E, Malliri A, Camargo F, Adams DJ, Iavarone A, Lasorella A, Sansom OJ (2017) HUWE1 is a critical colonic tumour suppressor gene that prevents MYC signalling, DNA damage accumulation and tumour initiation. EMBO Molec Medicine 9(2):181–197. https://doi.org/10.15252/emmm.201606684

    Article  CAS  Google Scholar 

Download references

Funding

This work is funded by the National Natural Science Foundation of China (NO. 81872892 and NO. 81773766), the Natural Science Foundation of Jiangsu Province (NO. BK20181330) and the “Double First-Class” University project (CPU2018GY38).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengtao Yuan.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, X., Du, D., Deng, Y. et al. The structure and regulation of the E3 ubiquitin ligase HUWE1 and its biological functions in cancer. Invest New Drugs 38, 515–524 (2020). https://doi.org/10.1007/s10637-020-00894-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-020-00894-6

Keywords

Navigation