Skip to main content

Advertisement

Log in

Novel thiosemicarbazones induce high toxicity in estrogen-receptor-positive breast cancer cells (MCF7) and exacerbate cisplatin effectiveness in triple-negative breast (MDA-MB231) and lung adenocarcinoma (A549) cells

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Cis-diamminedichloroplatinum(II) (CDDP), known as cisplatin, has been extensively used against breast cancer, which is the most frequent cancer among women, and lung cancer, the leading cancer that causes death worldwide. Novel compounds such as thiazole derivatives have exhibited antiproliferative activity, suggesting they could be useful against cancer treatment. Herein, we synthesized two novel thiosemicarbazones and an aldehyde to combine with CDDP to enhance efficacy against ER-positive breast MCF7 cancer cells, triple-negative/basal-B mammary carcinoma cells (MDA-MB231) and lung adenocarcinoma (A549) human cells. We synthesized 2,3,5,6-tetrafluoro-4-(2-mercaptoetanothiolyl)benzaldehyde (ALD), 5-[(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)thio]-2-furaldehyde thiosemicarbazone (TSC1) and 5-[(4-(trifluoromethyl)phenyl)thio]-2-furaldehyde thiosemicarbazone (TSC2) and used them alone or in combination with subtoxic CDDP concentrations to evaluate cytotoxicity, cytoskeleton integrity and mitochondrial function. We found that none of the synthesized compounds improved CDDP activity against MCF7 cell cultures; however, TSC2 was effective in enhancing the cytotoxicity of CDDP against MDA-MB231 and A549 cancer cell cultures. We demonstrated that the cytotoxic effect is related to the TSC2 capacity to induce disruption in the cytoskeleton network and to decrease mitochondrial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rosenberg B, Vancamp L, Krigas T (1965) Inhibition of cell division in escherichia coli by electrolysis products from a platinum electrode. Nature 205:698–699. https://doi.org/10.1038/205698a0

    Article  CAS  PubMed  Google Scholar 

  2. Iyer G, Balar AV, Milowsky MI, Bochner BH, Dalbagni G, Donat SM, Herr HW, Huang WC, Taneja SS, Woods M, Ostrovnaya I, al-Ahmadie H, Arcila ME, Riches JC, Meier A, Bourque C, Shady M, Won H, Rose TL, Kim WY, Kania BE, Boyd ME, Cipolla CK, Regazzi AM, Delbeau D, McCoy AS, Vargas HA, Berger MF, Solit DB, Rosenberg JE, Bajorin DF (2018) Multicenter prospective phase II trial of neoadjuvant dose-dense gemcitabine plus cisplatin in patients with muscle-invasive bladder cancer. J Clin Oncol 36:1949–1956. https://doi.org/10.1200/jco.2017.75.0158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Park IH, Kong SY, Kwon Y, Kim MK, Sim SH, Joo J, Lee KS (2018) Phase I/II clinical trial of everolimus combined with gemcitabine/cisplatin for metastatic triple-negative breast cancer. J Cancer 9:1145–1151. https://doi.org/10.7150/jca.24035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Forster M, Hackshaw A, de Pas T, Cobo M, Garrido P, Summers Y, Dingemans AMC, Flynn M, Schnell D, von Wangenheim U, Loembé AB, Kaiser R, Lee SM (2018) A phase I study of nintedanib combined with cisplatin/gemcitabine as first-line therapy for advanced squamous non-small cell lung cancer (LUME-lung 3). Lung Cancer 120:27–33. https://doi.org/10.1016/j.lungcan.2018.03.007

    Article  PubMed  Google Scholar 

  5. Li M, Zhai G, Gu X, Sun K (2018) ATF3 and PRAP1 play important roles in cisplatin-induced damages in microvascular endothelial cells. Gene 672:93–105. https://doi.org/10.1016/j.gene.2018.06.017

    Article  CAS  PubMed  Google Scholar 

  6. Lin M, Lv D, Zheng Y, Wu M, Xu C, Zhang Q, Wu L (2018) Downregulation of CPT2 promotes tumorigenesis and chemoresistance to cisplatin in hepatocellular carcinoma. Onco Targets Ther 11:3101–3110. https://doi.org/10.2147/ott.s163266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li Q, Zhang J, Zhou J, Yang B, Liu P, Cao L, Jing L, Liu H (2018) lncRNAs are novel biomarkers for differentiating between cisplatin-resistant and cisplatin-sensitive ovarian cancer. Oncol Lett 15:8363–8370. https://doi.org/10.3892/ol.2018.8433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Duan S, Yin J, Bai Z, Zhang Z (2018) Effects of taxol resistance gene 1 on the cisplatin response in gastric cancer. Oncol Lett 15:8287–8294. https://doi.org/10.3892/ol.2018.8390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Akladios FN, Andrew SD, Boog SJ, de Kock C, Haynes RK, Parkinson CJ (2019) The evaluation of metal co-ordinating bis-thiosemicarbazones as potential anti-malarial agents. Med Chem 15:51–58. https://doi.org/10.2174/1573406414666180525132204

    Article  CAS  PubMed  Google Scholar 

  10. de Santana TI, Barbosa MO, Gomes P, da Cruz ACN, da Silva TG, Leite ACL (2018) Synthesis, anticancer activity and mechanism of action of new thiazole derivatives. Eur J Med Chem 144:874–886. https://doi.org/10.1016/j.ejmech.2017.12.040

    Article  CAS  PubMed  Google Scholar 

  11. Malarz K, Mrozek-Wilczkiewicz A, Serda M, Rejmund M, Polanski J, Musiol R (2018) The role of oxidative stress in activity of anticancer thiosemicarbazones. Oncotarget 9:17689–17710. https://doi.org/10.18632/oncotarget.24844

    Article  PubMed  PubMed Central  Google Scholar 

  12. Qi J, Yao Q, Qian K, Tian L, Cheng Z, Yang D, Wang Y (2018) Synthesis, antiproliferative activity and mechanism of gallium(III)-thiosemicarbazone complexes as potential anti-breast cancer agents. Eur J Med Chem 154:91–100. https://doi.org/10.1016/j.ejmech.2018.05.016

    Article  CAS  PubMed  Google Scholar 

  13. Sirbu A, Palamarciuc O, Babak MV, Lim JM, Ohui K, Enyedy EA, Shova S, Darvasiova D, Rapta P, Ang WH, Arion VB (2017) Copper(ii) thiosemicarbazone complexes induce marked ROS accumulation and promote nrf2-mediated antioxidant response in highly resistant breast cancer cells. Dalton Trans 46:3833–3847. https://doi.org/10.1039/c7dt00283a

    Article  CAS  PubMed  Google Scholar 

  14. Rodriguez-Fanjul V, Lopez-Torres E, Mendiola MA, Pizarro AM (2018) Gold(III) bis(thiosemicarbazonate) compounds in breast cancer cells: cytotoxicity and thioredoxin reductase targeting. Eur J Med Chem 148:372–383. https://doi.org/10.1016/j.ejmech.2018.02.009

    Article  CAS  PubMed  Google Scholar 

  15. Guo ZL, Richardson DR, Kalinowski DS, Kovacevic Z, Tan-Un KC, Chan GC (2016) The novel thiosemicarbazone, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), inhibits neuroblastoma growth in vitro and in vivo via multiple mechanisms. J Hematol Oncol 9:98. https://doi.org/10.1186/s13045-016-0330-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Soares MA, Lessa JA, Mendes IC, da Silva JG, dos Santos RG, Salum LB, Daghestani H, Andricopulo AD, Day BW, Vogt A, Pesquero JL, Rocha WR, Beraldo H (2012) N(4)-phenyl-substituted 2-acetylpyridine thiosemicarbazones: cytotoxicity against human tumor cells, structure-activity relationship studies and investigation on the mechanism of action. Bioorg Med Chem 20:3396–3409. https://doi.org/10.1016/j.bmc.2012.04.027

    Article  CAS  PubMed  Google Scholar 

  17. Zhang B, Luo H, Xu Q, Lin L, Zhang B (2017) Antitumor activity of a trans-thiosemicarbazone schiff base palladium (II) complex on human gastric adenocarcinoma cells. Oncotarget 8:13620–13631. https://doi.org/10.18632/oncotarget.14620

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bartolak-Suki E, Imsirovic J, Nishibori Y, Krishnan R, Suki B (2017) Regulation of mitochondrial structure and dynamics by the cytoskeleton and mechanical factors. Int J Mol Sci 18:1812. https://doi.org/10.3390/ijms18081812

    Article  CAS  PubMed Central  Google Scholar 

  19. Bautista JL, Tiburcio J, Torrens H (2005) Synthesis of the new 5-(Fluorobenzenethiolated)-2-furfuraldehyde thiosemicarbazones. Synthesis 2005:899–902. https://doi.org/10.1055/s-2005-861835

    Article  CAS  Google Scholar 

  20. Venkatachalam TK, Pierens GK, Reutens DC (2014) Synthesis, NMR structural characterization and molecular modeling of substituted thiosemicarbazones and semicarbazones using DFT calculations to prove the syn/anti isomer formation. Magn Reson Chem 52:98–105. https://doi.org/10.1002/mrc.4041

    Article  CAS  PubMed  Google Scholar 

  21. Lobana TS, Sánchez A, Casas JS, Castiñeiras A, Sordo J, García-Tasende MS, Vázquez-López EM (1997) Symmetrisation, isomerism and structural studies on novel phenylmercury(II) thiosemicarbazonates: correlation of the energy barrier to rotation of the amino group with the bonding parameters of the thioamide group. J Chem Soc Dalton Trans:4289–4300. https://doi.org/10.1039/a703726k

  22. Mamedov IG, Bayramov MR, Mamedova YV, Maharramov AM (2013) Molecular dynamics of 6-methyl-2-phenyl-2,3-dihydro-4H-chromen-4-one and 6-methyl-2-(4-nitrophenyl)-2,3-dihydro-4H-chromen-4-one (flavanone) derivatives in a solution studied by NMR spectroscopy. Magn Reson Chem 51:234–239. https://doi.org/10.1002/mrc.3933

    Article  CAS  PubMed  Google Scholar 

  23. Emsley JW, Phillips L, Wray V (1976) Flourine coupling constants. Prog NMR Spectr 10:83–752. https://doi.org/10.1016/s0079-6565(76)80005-2

    Article  Google Scholar 

  24. Kunos CA, Ivy SP (2018) Triapine radiochemotherapy in advanced stage cervical cancer. Front Oncol 8:149. https://doi.org/10.3389/fonc.2018.00149

    Article  PubMed  PubMed Central  Google Scholar 

  25. Knox JJ, Hotte SJ, Kollmannsberger C, Winquist E, Fisher B, Eisenhauer EA (2007) Phase II study of Triapine in patients with metastatic renal cell carcinoma: a trial of the National Cancer Institute of Canada clinical trials group (NCIC IND.161). Investig New Drugs 25:471–477. https://doi.org/10.1007/s10637-007-9044-9

    Article  CAS  Google Scholar 

  26. Haldys K, Goldeman W, Jewginski M, Wolinska E, Anger N, Rossowska J, Latajka R (2018) Inhibitory properties of aromatic thiosemicarbazones on mushroom tyrosinase: synthesis, kinetic studies, molecular docking and effectiveness in melanogenesis inhibition. Bioorg Chem 81:577–586. https://doi.org/10.1016/j.bioorg.2018.09.003

    Article  CAS  PubMed  Google Scholar 

  27. Khan A, Jasinski JP, Smolenski VA, Hotchkiss EP, Kelley PT, Shalit ZA, Kaur M, Paul K, Sharma R (2018) Enhancement in anti-tubercular activity of indole based thiosemicarbazones on complexation with copper(I) and silver(I) halides: structure elucidation, evaluation and molecular modelling. Bioorg Chem 80:303–318. https://doi.org/10.1016/j.bioorg.2018.06.027

    Article  CAS  PubMed  Google Scholar 

  28. Feng Y, Kunos CA, Xu Y (2015) Determination of triapine, a ribonucleotide reductase inhibitor, in human plasma by liquid chromatography tandem mass spectrometry. Biomed Chromatogr 29:1380–1387. https://doi.org/10.1002/bmc.3434

    Article  CAS  PubMed  Google Scholar 

  29. Heffeter P, Pape VFS, Enyedy EA, Keppler BK, Szakacs G, Kowol CR (2019) Anticancer thiosemicarbazones: chemical properties, interaction with iron metabolism, and resistance development. Antioxid Redox Signal 30:1062–1082. https://doi.org/10.1089/ars.2017.7487

    Article  CAS  PubMed  Google Scholar 

  30. Vandresen F, Falzirolli H, Batista ASA, da Silva-Giardini AP, de Oliveira DN, Catharino RR, Ruiz AL, de Carvalho JE, Foglio MA, da Silva CC (2014) Novel R-(+)-limonene-based thiosemicarbazones and their antitumor activity against human tumor cell lines. Eur J Med Chem 79:110–116. https://doi.org/10.1016/j.ejmech.2014.03.086

    Article  CAS  PubMed  Google Scholar 

  31. Rodrigues DSB, de Avila RI, Benfica PL, Bringel LP, de Oliveira CMA, Vandresen F, da Silva CC, Valadares MC (2018) 4-Fluorobenzaldehyde limonene-based thiosemicarbazone induces apoptosis in PC-3 human prostate cancer cells. Life Sci 203:141–149. https://doi.org/10.1016/j.lfs.2018.04.024

    Article  CAS  Google Scholar 

  32. Lee A, Djamgoz MBA (2018) Triple negative breast cancer: emerging therapeutic modalities and novel combination therapies. Cancer Treat Rev 62:110–122. https://doi.org/10.1016/j.ctrv.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  33. Malik P, Mukherjee TK (2018) Recent advances in gold and silver nanoparticle based therapies for lung and breast cancers. Int J Pharm 553:483–509. https://doi.org/10.1016/j.ijpharm.2018.10.048

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by Programa de Apoyo a los Profesores de Carrera para Promover Grupos de Investigación (PAPCA, Facultad de Estudios Superiores Iztacala, UNAM; FESI-DIP-PAPCA-2014-36) and the National Council of Science and Technology (CONACyT 268769). Medina-Reyes Estefany Ingrid is a doctoral student from Programa de Doctorado en Ciencias Biomédicas de la Universidad Nacional Autónoma de México (UNAM) and received fellowship 576227 from CONACYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Vaca-Paniagua.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The compound 5-[(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)thio]-2-furaldehyde thiosemicarbazone (TSC1) is highly cytotoxic in ER-positive breast and lung adenocarcinoma cancer cells.

• Due to its high toxicity, TSC1 was not able to synergize with cisplatin.

• 5-[(4-(trifluoromethyl)phenyl)thio]-2-furaldehyde thiosemicarbazone (TSC2) showed synergistic effects with cisplatin in triple-negative/basal-B mammary carcinoma cells.

• The synergistic mechanism of TSC2 cytotoxicity involves disorganization of the cytoskeleton and mitochondrial dysfunction in ER-positive breast, triple-negative/basal-B mammary carcinoma and lung adenocarcinoma cancer cells.

Electronic supplementary material

ESM 1

(PDF 547 kb)

ESM 2

(PDF 1968 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina-Reyes, E.I., Mancera-Rodríguez, M.A., Delgado-Buenrostro, N.L. et al. Novel thiosemicarbazones induce high toxicity in estrogen-receptor-positive breast cancer cells (MCF7) and exacerbate cisplatin effectiveness in triple-negative breast (MDA-MB231) and lung adenocarcinoma (A549) cells. Invest New Drugs 38, 558–573 (2020). https://doi.org/10.1007/s10637-019-00789-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-019-00789-1

Keywords

Navigation