Skip to main content

The antitumor efficacy of monomeric disintegrin obtustatin in S-180 sarcoma mouse model

Summary

Obtustatin, isolated from the Levantine Viper snake venom (Macrovipera lebetina obtusa -MLO), is the shortest known monomeric disintegrin shown to specifically inhibit the binding of the α1β1 integrin to collagen IV. Its oncostatic effect is due to the inhibition of angiogenesis, likely through α1β1 integrin inhibition in endothelial cells. To explore the therapeutic potential of obtustatin, we studied its effect in S-180 sarcoma-bearing mice model in vivo as well as in human dermal microvascular endothelial cells (HMVEC-D) in vitro, and tested anti-angiogenic activity in vivo using the chick embryo chorioallantoic membrane assay (CAM assay). Our in vivo results show that obtustatin inhibits tumour growth by 33%. The expression of vascular endothelial growth factor (VEGF) increased after treatment with obtustatin, but the level of expression of caspase 8 did not change. In addition, our results demonstrate that obtustatin inhibits FGF2-induced angiogenesis in the CAM assay. Our in vitro results show that obtustatin does not exhibit cytotoxic activity in HMVEC-D cells in comparison to in vivo results. Thus, our findings disclose that obtustatin might be a potential candidate for the treatment of sarcoma in vivo with low toxicity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aranda-Souza M, Rossato F, Costa R, Figueira T, Castilho R, Guarniere M, Nunes E, Coelho L, Correia M, Vercesi AA (2014) Lectin from Bothrops leucurus snake venom raises cytosolic calcium levels and promotes B16-F10 melanoma necrotic cell death via mitochondrial permeability transition. Toxicon 2(82):97–103

    Article  CAS  Google Scholar 

  2. Benassi MS, Gamberi G, Magagnoli G, Molendini L, Ragazzini P, Merli M, Chiesa F, Balladelli A, Manfrini M, Bertoni F (2001) Metalloproteinase expression and prognosis in soft tissue sarcomas. Ann Oncol 12:75–80

    Article  CAS  PubMed  Google Scholar 

  3. Bielenberg DR, Zetter BR (2015) The contribution of angiogenesis to the process of metastasis. Cancer J 21:267–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brown MC, Staniszewska I, Del Valle L, Tuszynski GP, Marcinkiewicz C (2008) Angiostatic activity of obtustatin as alpha1beta1 integrin inhibitor in experimental melanoma growth. Int J Cancer 123:2195–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Calvete JJ, Mureno-Murciano MP, Theakston DG, Kisiel DG, Marcinkiewicz C (2003) Snake venom disintegrins: novel dimeric disintegrins and structural diversification by disulphide bond engineering. Biochem J 372:725–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10:417–427

    Article  CAS  PubMed  Google Scholar 

  7. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  CAS  PubMed  Google Scholar 

  8. Chen X, Su Y, Fingleton B, Acuff H, Matrisian LM, Zent R, Pozzi A (2005) Increased plasma MMP9 in integrin a1-null mice enhances lung metastasis of colon carcinoma cells. Int J Cancer 116:52–61

    Article  CAS  PubMed  Google Scholar 

  9. Cormier JN, Pollock RE (2004) Soft tissue sarcomas. CA Cancer J Clin 54:94–109

    Article  PubMed  Google Scholar 

  10. Dean BJF, Whitwell D (2009) Epidemiology of bone and soft-tissue sarcomas. Orthop Traumatol 23:223–230

    Google Scholar 

  11. Ebrahim K, Shirazi F, Mirakabadi A, Vatanpour H (2015) Cobra venom cytotoxins; apoptotic or necrotic agents? Toxicon 108:134–140

    Article  CAS  PubMed  Google Scholar 

  12. Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2:795–803

    Article  CAS  PubMed  Google Scholar 

  13. Fletcher CDM, Uni KK, Mertens F (2002) Eds: World Health Organisation classification of tumours. IARC Press, Pathology and genetics Lyon, 427p

    Google Scholar 

  14. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–18

    Article  CAS  PubMed  Google Scholar 

  15. Folkman J (2003) Fundamental concepts of the angiogenic process. Curr Mol Med 3:643–651

    Article  CAS  PubMed  Google Scholar 

  16. Ghazaryan NA, Ghulikyan L, Kishmiryan A, Kirakosyan G, Nazaryan O, Ghevondyan T, Zakaryan N, Ayvazyan NM (2015) Anti-tumor effect investigation of obtustatin and crude Macrovipera lebetina obtusa venom in S-180 sarcoma bearing mice. Eur J Pharmacol 11:340–345

    Article  CAS  Google Scholar 

  17. Golubkov V, Hawes D, Markland FS (2003) Anti-angiogenicactivity of contortrostatin, a disintegrin from Agkistrodoncontortrixcontortrix snake venom. Angiogenesis2003 6:213–224

    Article  CAS  Google Scholar 

  18. Goswami S (2013) Importance of integrin receptors in the field of pharmaceutical & medical science. Adv Biol Chem 3:224–252

    Article  CAS  Google Scholar 

  19. Guimarães DO, Lopes DS, Azevedo FV, Gimenes SN, Silva MA, Achê DC, Gomes MS, Vecchi L, Goulart LR, Yoneyama KA, Rodrigues RS, Rodrigues VM (2017) In vitro antitumor and antiangiogenic effects of Bothropoidin, a metalloproteinase from Bothropspauloensis snake venom. Int J Biol Macromol 97:770–777

    Article  CAS  PubMed  Google Scholar 

  20. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156:1363–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hedlund EM, Hosaka K, Zhong Z, Cao R, Cao Y (2009) Malignant cell-derived PlGF promotes normalization and remodeling of the tumor vasculature. Proc Natl Acad Sci U SA 106:17505–17510

    Article  Google Scholar 

  22. Hirota K, Semenza GL (2006) Regulation of angiogenesis by hypoxiainducible factor 1. Crit Rev Oncol Hematol 59:15–26

    Article  PubMed  Google Scholar 

  23. Ibaragi S, Shimo T, Hassan NMM, Isowa S, Kurio N, Mandai H, Kodama S, Sasaki A (2011) Induction of MMP-13 expression in bone-metastasizing cancer cells by type I collagen through integrin a1b1 and a2b1-p38 MAPK signaling. Anticancer Res 31:1307–1313

    CAS  PubMed  Google Scholar 

  24. Kisiel DG, Calvete JJ, Katzhendler J, Fertala A, Lazarovici P, Marcinkiewicz C (2004) Structural determinants of the selectivity of KTS-disintegrins for the alpha1beta1 integrin. FEBS Lett 577:478–482

    Article  CAS  PubMed  Google Scholar 

  25. Liang H, Xiao J, Zhou Z, Wu J, Ge F, Li Z, Zhang H, Sun J, Li F, Liu R, Chen C (2018) Hypoxia induces miR-153 through the IRE1α-XBP1 pathway to fine tune the HIF1α/VEGFA axis in breast cancer angiogenesis. Oncogene. https://doi.org/10.1038/s41388-017-0089-8

  26. Lijnen HR (2008) Angiogenesis and obesity. Cardiovasc Res 78:286–293

    Article  CAS  PubMed  Google Scholar 

  27. Marcinkewicz C (2005) Functional characteristic of snake venom disintegrins: potential therapeutic implication. Curr Pharm Des 11:815–827

    Article  Google Scholar 

  28. Marcinkiewicz C, Rosenthal LA, Mosser DM, Kunicki TJ, Niewiarowicz C (1996) Immunological characterization of erististatin and echistatin binding sites on αIIbβ3 and ανβ3 integrins. Biochem J 317:817–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marcinkiewicz C, Weinreb PH, Calvete JJ, Kisiel DG, Mousa SA, Tuszynski GP, Lobb RR (2003) Obtustatin: a potent selective inhibitor of alpha1beta1 integrin in vitro and angiogenesis in vivo. Cancer Res 9:2020–2023

    Google Scholar 

  30. Naldini A, Carraro F (2005) Role of inflammatory mediators in angiogenesis. Curr Drug Targets Inflamm Allergy 4:3–8

    Article  CAS  PubMed  Google Scholar 

  31. Pozzi A, Moberg PE, Miles LA, Wagner S, Soloway P, Gardner HA (2000) Elevated matrix metalloprotease and angiostatin levels in integrin alpha 1 knockout mice cause reduced tumor vascularization. Proc Natl AcadSci USA 97:2202–2207

    Article  CAS  Google Scholar 

  32. Prinholato da Silva C, Costa T, Paiva R, Cintra A, Menaldo D, Antunes L, Sampaio S (2015) Antitumor potential of the myotoxin BthTX-I from Bothrops jararacussu snake venom: evaluation of cell cycle alterations and death mechanisms induced in tumor cell lines. J Venom Anim Toxins Incl Trop Dis. https://doi.org/10.1186/s40409-015-0044-5

  33. Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9:677–684

    Article  CAS  PubMed  Google Scholar 

  34. Sanz L, Ayvazyan N, Calvete JJ (2008) Snake venomics of the Armenian mountain vipers Macrovipera lebetina obtusa and Vipera raddei. J Proteome 71:198–209

    Article  CAS  Google Scholar 

  35. Senger DR, Perruzzi CA, Streit M, Koteliansky VE, De Fougerolles AR, Detmar M (2002) Theα1β1 and α2β1 integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. Am J Pathol 160:195–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stupack DG, Cheresh DA (2002) Get a ligand, get a life: integrins, signaling and cell survival. J Cell Sci 115:3729–3738

    Article  CAS  PubMed  Google Scholar 

  37. Vihinen P, Riikonen T, Laine A, Heino J (1996) Integrin alpha 2 beta 1 in tumorigenic human osteosarcoma cell lines regulates cell adhesion, migration, and invasion by interaction with type I collagen. Cell Growth Differ 7:439–447

    CAS  PubMed  Google Scholar 

  38. Wang GL, Semenza GL (1993) Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 268:21513–21518

    CAS  PubMed  Google Scholar 

  39. Wang YQ, Su J, Wu F, Lu P, Yuan LF, Yuan WE, Sheng J, Jin T (2012) Biscarbamate cross-linked polyethylenimine derivative with low molecular weight, low cytotoxicity, and high efficiency for gene delivery. Int J Nanomedicine 7:693–704

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yoshimura K, Meckel KF, Laird LS, Chia CY, Park JJ, Olino KL, Tsunedomi R, Harada T, Iizuka N, Hazama S (2009) Integrin a2 mediates selective metastasis to the liver. Cancer Res 69:7320–7328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang Z, Ramirez NE, Yankeelov TE, Li Z, Ford LE, Qi Y, Pozzi A, Zutter MM (2008) a2b1 integrin expression in the tumor microenvironment enhances tumor angiogenesis in a tumor cell-specific manner. Blood 111:1980–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was made possible by the research grant # molbio 3440 from the Armenian National Science and Education Fund (ANSEF) based in New York.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narine Ghazaryan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(WMV 8050 kb)

ESM 2

(WMV 8285 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghazaryan, N., Movsisyan, N., Macedo, J.C. et al. The antitumor efficacy of monomeric disintegrin obtustatin in S-180 sarcoma mouse model. Invest New Drugs 37, 1044–1051 (2019). https://doi.org/10.1007/s10637-019-00734-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-019-00734-2

Keywords

  • Obtustatin
  • Sarcoma
  • Angiogenesis
  • VEGF