Skip to main content

Advertisement

Log in

Nifuroxazide induces apoptosis, inhibits cell migration and invasion in osteosarcoma

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Osteosarcoma is the most common primary malignancy of bone and characterized by an appendicular primary tumor with a high rate of metastasis to the lungs. Unfortunately, there is no effective strategy to treat osteosarcoma in current clinical practice. In this study, the anticancer effects and potential mechanisms of nifuroxazide, an oral nitrofuran antibiotic, on two osteosarcoma cell lines were investigated. The results of the antiproliferative activity in vitro showed that nifuroxazide inhibited cell proliferation of UMR106 and MG63 cells in a dose- and time-dependent manner. Interestingly, nifuroxazide showed low toxicity to non-tumor cells (HEK 293 T). In addition, ROS-mitochondrial mediated apoptosis was observed after treatment of nifuroxazide. Moreover, nifuroxazide could significantly inhibit osteosarcoma cells migration and invasion via p-Stat3, MMP-2 and MMP-9 mediated signaling pathway. Taken together, our results suggested that nifuroxazide could be a promising agent for osteosarcoma treatment by inhibiting cell proliferation, inducing cell apoptosis and impairing cell migration and invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Whelan JS, Davis LE (2018) Osteosarcoma, chondrosarcoma, and chordoma. J Clin Oncol 36:188–193

    Article  CAS  PubMed  Google Scholar 

  2. Wang W, Zhao HF, Yao TF, Gong H (2018) Advanced development of ErbB family-targeted therapies in osteosarcoma treatment. Investig New Drugs. https://doi.org/10.1007/s10637-018-0684-8

  3. Chan RJ, Cooper T, Kratz CP, Weiss B, Loh ML (2009) Juvenile myelomonocytic leukemia: a report from the 2nd international JMML symposium. Leuk Res 33:355–362

    Article  PubMed  Google Scholar 

  4. Pradelli E, Karimdjee-Soilihi B, Michiels JF, Ricci JE, Millet MA, Vandenbos F et al (2009) Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs. Int J Cancer 125:2586–2594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Morrow JJ, Bayles I, Funnell APW, Miller TE, Saiakhova A, Lizardo MM et al (2018) Positively selected enhancer elements endow osteosarcoma cells with metastatic competence. Nat Med 24:178–185

    Google Scholar 

  6. Geller DS, Gorlick R (2010) Osteosarcoma: a review of diagnosis, management, and treatment strategies. Clin Adv Hematol Oncol 8:705–718

    PubMed  Google Scholar 

  7. Tomita K, Kawahara N, Murakami H, Demura S (2006) Total en bloc spondylectomy for spinal tumors: improvement of the technique and its associated basic background. J Orthop Sci 11:3–12

    Article  PubMed Central  PubMed  Google Scholar 

  8. Deng ZP, Ding Y, Puri A, Wang EH, Gulia A, Durban C et al (2015) The surgical treatment and outcome of nonmetastatic extremity osteosarcoma with pathological fractures. Chin Med J 128:2605–2608

    Article  PubMed Central  PubMed  Google Scholar 

  9. Biazzo A, De Paolis M (2016) Multidisciplinary approach to osteosarcoma. Acta Orthop Belg 82:690–698

    CAS  PubMed  Google Scholar 

  10. Akagunduz OO, Kamer SA, Kececi B, Demirag B, Oniz H, Kantar M et al (2016) The role of radiotherapy in local control of nonextremity Ewing sarcomas. Tumori 102:162–167

    Article  PubMed  Google Scholar 

  11. Wang CC, Jing JH, Cheng L (2018) Emerging roles of non-coding RNAs in the pathogenesis, diagnosis and prognosis of osteosarcoma. Investig New Drugs 36:1116–1132

    Article  CAS  Google Scholar 

  12. Ritter J, Bielack SS (2010) Osteosarcoma. Ann Oncol 21(Suppl 7):vii320–vii325

    PubMed  Google Scholar 

  13. Xue HQ, Li J, Xie HZ, Wang YD (2018) Review of drug repositioning approaches and resources. Int J Biol Sci 14:1232–1244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Würth R, Thellung S, Bajetto A, Mazzanti M, Florio T, Barbieri F (2016) Drug-repositioning opportunities for cancer therapy: novel molecular targets for known compounds. Drug Discov Today 21:190–199

    Article  CAS  PubMed  Google Scholar 

  15. Shim JS, Liu JO (2014) Recent advances in drug repositioning for the discovery of new anticancer drugs. Int J Biol Sci 10:654–663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Zhu Y, Ye T, Yu X, Lei Q, Yang F, Xia Y et al (2016) Nifuroxazide exerts potent anti-tumor and anti-metastasis activity in melanoma. Sci Rep 6:20253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ye TH, Yang FF, Zhu YX, Li YL, Lei Q, Song XJ et al (2017) Inhibition of Stat3 signaling pathway by nifuroxazide improves antitumor immunity and impairs colorectal carcinoma metastasis. Cell Death Dis 8:e2534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Yang F, Hu M, Lei Q, Xia Y, Zhu Y, Song X et al (2015) Nifuroxazide induces apoptosis and impairs pulmonary metastasis in breast cancer model. Cell Death Dis 6:e1701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Zhang T, Li J, Dong Y, Zhai D, Lai L, Dai F et al (2012) Cucurbitacin E inhibits breast tumor metastasis by suppressing cell migration and invasion. Breast Cancer Res Treat 135:445–458

    Article  CAS  PubMed  Google Scholar 

  20. Ye T, Xiong Y, Yan Y, Xia Y, Song X, Liu L et al (2014) The anthelmintic drug niclosamide induces apoptosis, impairs metastasis and reduces immunosuppressive cells in breast cancer model. PLoS One 9:e85887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Thandapani P, Aifantis I (2017) Apoptosis, up the ante. Cancer Cell 32:402–403

    Article  CAS  PubMed  Google Scholar 

  22. Hahn WC (2004) Cancer: surviving on the edge. Cancer Cell 6:215–222

    Article  CAS  PubMed  Google Scholar 

  23. Slee EA, Adrain C, Martin SJ (2001) Executioner caspase-3, −6, and −7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276:7320–7326

    Article  CAS  PubMed  Google Scholar 

  24. Benhar M, Forrester MT, Hess DT, Stamler JS (2008) Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320:1050–1054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Wang C, Youle RJ (2009) The role of mitochondria in apoptosis. Annu Rev Genet 43:95–118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Singh PK, Roukounakis A, Frank DO, Kirschnek S, Das KK, Neumann S et al (2017) Dynein light chain 1 induces assembly of large Bim complexes on mitochondria that stabilize Mcl-1 and regulate apoptosis. Genes Dev 31:1754–1769

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Pyakurel A, Savoia C, Hess D, Scorrano L (2015) Extracellular regulated kinase phosphorylates mitofusin 1 to control mitochondrial morphology and apoptosis. Mol Cell 58:244–254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Bhola PD, Letai A (2016) Mitochondria-judges and executioners of cell death sentences. Mol Cell 61:695–704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Mirabello L, Koster R, Moriarity BS, Spector LG, Meltzer PS, Gary J et al (2015) A genome-wide scan identifies variants in NFIB associated with metastasis in patients with osteosarcoma. Cancer Discov 5:920–931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ellegast J, Barth TF, Schulte M, Bielack SS, Schmid M, Mayer-Steinacker R (2011) Metastasis of osteosarcoma after 16 years. J Clin Oncol 29:e62–e66

    Article  PubMed  Google Scholar 

  31. Lu J, Song G, Tang Q, Zou C, Han F, Zhao Z et al (2015) IRX1 hypomethylation promotes osteosarcoma metastasis via induction of CXCL14/NF-kappaB signaling. J Clin Invest 125:1839–1856

    Article  PubMed Central  PubMed  Google Scholar 

  32. Hattori H, Yamamoto K (2012) Lymph node metastasis of osteosarcoma. J Clin Oncol 30:e345–e349

    Article  PubMed  Google Scholar 

  33. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S (1980) Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284:67–68

    Article  CAS  PubMed  Google Scholar 

  34. Eissa S, Ali-Labib R, Swellam M, Bassiony M, Tash F, El-Zayat TM (2007) Noninvasive diagnosis of bladder cancer by detection of matrix metalloproteinases (MMP-2 and MMP-9) and their inhibitor (TIMP-2) in urine. Eur Urol 52:1388–1396

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Support Program for Science and Technology of Sichuan Province (2017SZ0106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongmei Xie.

Ethics declarations

Conflict of interest

The authors confirm that they have no conflict of interest with the content of this article.

Ethical approval

This article does not contain studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Zeng, A., Fang, A. et al. Nifuroxazide induces apoptosis, inhibits cell migration and invasion in osteosarcoma. Invest New Drugs 37, 1006–1013 (2019). https://doi.org/10.1007/s10637-019-00724-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-019-00724-4

Keywords

Navigation