Skip to main content

Advertisement

Log in

Advanced development of ErbB family-targeted therapies in osteosarcoma treatment

  • REVIEW
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Osteosarcoma (OS) is the most common primary aggressive and malignant bone tumor. Newly diagnostic OS patients benefit from the standard therapy including surgical resection plus radiotherapy and neoadjuvant chemotherapy (MAP chemotherapy: high-dose methotrexate, doxorubicin and cisplatin). However, tumor recurrence and metastasis give rise to a sharp decline of the 5-year overall survival rate in OS patients. Little improvement has been made for decades, urging the development of more effective therapeutic approaches. ErbB receptor family including EGFR, HER2, HER3 and HER4, being important to the activation of PI3K/Akt and MAPK signaling pathways, are potential targets for OS treatment. Genetic aberrations (amplification, overexpression, mutation and altered splicing) of ErbB are essential to the growth, apoptosis, motility and metastasis in a variety of cancers. Overexpression of ErbB family is associated with the poor prognosis of cancer patients. A number of monoclonal antibodies or inhibitors specific for ErbB family have entered clinical trials in a range of solid tumors including breast carcinoma, lung carcinoma and sarcoma. Here, we summarized the roles and expression of ErbB family in OS and the current development of ErbB-targeted therapeutic strategies including chemotherapies and immunotherapies for OS treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADCC:

Antibody-dependent cell-mediated cytotoxicity

ATP:

Adenosine triphosphate

CAR:

Chimeric antigen receptor

CAR-T:

Chimeric antigen receptor T cell immunotherapy

DAC:

5-aza-2′-deoxycytidine

DLT:

Dose-limiting toxicity

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

ERα:

Estrogen receptor α

H&N:

Head and neck cancer

HB-EGF:

Heparin-binding EGF

HRG:

Heregulin

IFNγ:

Interferon γ

IGF:

Insulin like growth factor

IGF-IR:

Insulin-like growth factor I receptor

IL:

Interleukin

JM:

Juxtamembrane

MAPK:

Mitogen-activated protein kinase

MTD:

Maximum-tolerated dose

NK:

Natural killer

NSCLC:

Non-small cell lung cancer

NRG:

Neuregulin

OS:

Osteosarcoma

PEA:

Pseudomonas exotoxin A

PFS:

Progression-free survival

PI3K:

Phosphatidylinositol 3-kinase

ROS:

Reactive oxygen species

RTK:

Receptor tyrosine kinase

SH2:

Src homology 2

TACE:

Tumor necrosis factor-α-converting enzyme

TGFα:

Transforming growth factor α

TIC:

Tumor-initiating cell

VEGFR:

Vascular endothelial growth factor receptor.

References

  1. Bielack SS, Kempf-Bielack B, Delling G, Exner GU, Flege S, Helmke K, Kotz R, Salzer-Kuntschik M, Werner M, Winkelmann W, Zoubek A, Jürgens H, Winkler K (2002) Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol 20:776–790

    Article  Google Scholar 

  2. Luetke A, Meyers PA, Lewis I, Juergens H (2014) Osteosarcoma treatment - where do we stand? A state of the art review. Cancer Treat Rev 40:523–532

    Article  PubMed  Google Scholar 

  3. Allison DC, Carney SC, Ahlmann ER, Hendifar A, Chawla S, Fedenko A, Angeles C, Menendez LR (2012) A meta-analysis of osteosarcoma outcomes in the modern medical era. Sarcoma 2012:704872

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bacci G, Briccoli A, Rocca M, Ferrari S, Donati D, Longhi A, Bertoni F, Bacchini P, Giacomini S, Forni C, Manfrini M, Galletti S (2003) Neoadjuvant chemotherapy for osteosarcoma of the extremities with metastases at presentation: recent experience at the Rizzoli institute in 57 patients treated with cisplatin, doxorubicin, and a high dose of methotrexate and ifosfamide. Ann Oncol 14:1126–1134

    Article  CAS  PubMed  Google Scholar 

  5. Bacci G, Rocca M, Salone M, Balladelli A, Ferrari S, Palmerini E, Forni C, Briccoli A (2008) High grade osteosarcoma of the extremities with lung metastases at presentation: treatment with neoadjuvant chemotherapy and simultaneous resection of primary and metastatic lesions. J Surg Oncol 98:415–420

    Article  PubMed  Google Scholar 

  6. Chen X, Bahrami A, Pappo A, Easton J, Dalton J, Hedlund E, Ellison D, Shurtleff S, Wu G, Wei L, Parker M, Rusch M, Nagahawatte P, Wu J, Mao S, Boggs K, Mulder H, Yergeau D, Lu C, Ding L, Edmonson M, Qu C, Wang J, Li Y, Navid F, Daw NC, Mardis ER, Wilson RK, Downing JR, Zhang J, Dyer MA, St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project (2014) Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep 7:104–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kovac M, Blattmann C, Ribi S, Smida J, Mueller NS, Engert F, Castro-Giner F, Weischenfeldt J, Kovacova M, Krieg A, Andreou D, Tunn PU, Dürr HR, Rechl H, Schaser KD, Melcher I, Burdach S, Kulozik A, Specht K, Heinimann K, Fulda S, Bielack S, Jundt G, Tomlinson I, Korbel JO, Nathrath M, Baumhoer D (2015) Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat Commun 6:8940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Behjati S, Tarpey PS, Haase K, Ye H, Young MD, Alexandrov LB, Farndon SJ, Collord G, Wedge DC, Martincorena I, Cooke SL, Davies H, Mifsud W, Lidgren M, Martin S, Latimer C, Maddison M, Butler AP, Teague JW, Pillay N, Shlien A, McDermott U, Futreal PA, Baumhoer D, Zaikova O, Bjerkehagen B, Myklebost O, Amary MF, Tirabosco R, van Loo P, Stratton MR, Flanagan AM, Campbell PJ (2017) Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma. Nat Commun 8:15936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Perry JA, Kiezun A, Tonzi P, Van Allen EM, Carter SL, Baca SC, Cowley GS, Bhatt AS, Rheinbay E, Pedamallu CS et al (2014) Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc Natl Acad Sci U S A 111:E5564–E5573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Linggi B, Carpenter G (2006) ErbB receptors: new insights on mechanisms and biology. Trends Cell Biol 16:649–656

    Article  CAS  PubMed  Google Scholar 

  11. Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J (2006) An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125:1137–1149

    Article  CAS  PubMed  Google Scholar 

  12. Hughes DP, Thomas DG, Giordano TJ, Baker LH, McDonagh KT (2004) Cell surface expression of epidermal growth factor receptor and her-2 with nuclear expression of her-4 in primary osteosarcoma. Cancer Res 64:2047–2053

    Article  CAS  PubMed  Google Scholar 

  13. Heng L, Jia Z, Bai J, Zhang K, Zhu Y, Ma J, Zhang J, Duan H (2017) Molecular characterization of metastatic osteosarcoma: differentially expressed genes, transcription factors and microRNAs. Mol Med Rep 15:2829–2836

    Article  CAS  PubMed  Google Scholar 

  14. Shi Z, Zhou H, Pan B, Lu L, Wei Z, Shi L, Yao X, Kang Y, Feng S (2017) Exploring the key genes and pathways of osteosarcoma with pulmonary metastasis using a gene expression microarray. Mol Med Rep 16:7423–7431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366:2–16

    Article  CAS  Google Scholar 

  16. Freeman SS, Allen SW, Ganti R, Wu J, Ma J, Su X, Neale G, Dome JS, Daw NC, Khoury JD (2008) Copy number gains in EGFR and copy number losses in PTEN are common events in osteosarcoma tumors. Cancer 113:1453–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Do SI, Jung WW, Kim HS, Park YK (2009) The expression of epidermal growth factor receptor and its downstream signaling molecules in osteosarcoma. Int J Oncol 34:797–803

    CAS  PubMed  Google Scholar 

  18. Wen YH, Koeppen H, Garcia R, Chiriboga L, Tarlow BD, Peters BA, Eigenbrot C, Yee H, Steiner G, Greco MA (2007) Epidermal growth factor receptor in osteosarcoma: expression and mutational analysis. Hum Pathol 38:1184–1191

    Article  CAS  PubMed  Google Scholar 

  19. Diao C, Xi Y, Xiao T (2018) Identification and analysis of key genes in osteosarcoma using bioinformatics. Oncol Lett 15:2789–2794

    PubMed  Google Scholar 

  20. Kersting C, Gebert C, Agelopoulos K, Schmidt H, van Diest PJ, Juergens H, Winkelmann W, Kevric M, Gosheger G, Brandt B, Bielack S, Buerger H (2007) Epidermal growth factor receptor expression in high-grade osteosarcomas is associated with a good clinical outcome. Clin Cancer Res 13:2998–3005

    Article  CAS  PubMed  Google Scholar 

  21. Selvarajah GT, Verheije MH, Kik M, Slob A, Rottier PJ, Mol JA, Kirpensteijn J (2012) Expression of epidermal growth factor receptor in canine osteosarcoma: association with clinicopathological parameters and prognosis. Vet J 193:412–419

    Article  PubMed  Google Scholar 

  22. Lee JA, Ko Y, Kim DH, Lim JS, Kong CB, Cho WH, Jeon DG, Lee SY, Koh JS (2012) Epidermal growth factor receptor: is it a feasible target for the treatment of osteosarcoma? Cancer Res Treat 44:202–209

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rivera F, Vega-Villegas ME, Lopez-Brea MF (2008) Cetuximab, its clinical use and future perspectives. Anti-Cancer Drugs 19:99–113

    Article  CAS  PubMed  Google Scholar 

  24. Yang XD, Jia XC, Corvalan JR, Wang P, Davis CG (2001) Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit Rev Oncol Hematol 38:17–23

    Article  CAS  PubMed  Google Scholar 

  25. Karapetis CS, Khambata-Ford S, Jonker DJ, O'Callaghan CJ, Tu D, Tebbutt NC, Simes RJ, Chalchal H, Shapiro JD, Robitaille S, Price TJ, Shepherd L, Au HJ, Langer C, Moore MJ, Zalcberg JR (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359:1757–1765

    Article  CAS  Google Scholar 

  26. Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, Juan T, Sikorski R, Suggs S, Radinsky R et al (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26:1626–1634

    Article  CAS  Google Scholar 

  27. Kazandjian D, Blumenthal GM, Yuan W, He K, Keegan P, Pazdur R (2016) FDA approval of Gefitinib for the treatment of patients with metastatic EGFR mutation-positive non-small cell lung Cancer. Clin Cancer Res 22:1307–1312

    Article  CAS  PubMed  Google Scholar 

  28. Cohen MH, Johnson JR, Chen YF, Sridhara R, Pazdur R (2005) FDA drug approval summary: erlotinib (Tarceva) tablets. Oncologist 10:461–466

    Article  CAS  PubMed  Google Scholar 

  29. Sevelda F, Mayr L, Kubista B, Lotsch D, van Schoonhoven S, Windhager R, Pirker C, Micksche M, Berger W (2015) EGFR is not a major driver for osteosarcoma cell growth in vitro but contributes to starvation and chemotherapy resistance. J Exp Clin Cancer Res 34:134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gvozdenovic A, Boro A, Born W, Muff R, Fuchs B (2017) A bispecific antibody targeting IGF-IR and EGFR has tumor and metastasis suppressive activity in an orthotopic xenograft osteosarcoma mouse model. Am J Cancer Res 7:1435–1449

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mantovani FB, Morrison JA, Mutsaers AJ (2016) Effects of epidermal growth factor receptor kinase inhibition on radiation response in canine osteosarcoma cells. BMC Vet Res 12:82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pahl JH, Ruslan SE, Buddingh EP, Santos SJ, Szuhai K, Serra M, Gelderblom H, Hogendoorn PC, Egeler RM, Schilham MW, Lankester AC (2012) Anti-EGFR antibody cetuximab enhances the cytolytic activity of natural killer cells toward osteosarcoma. Clin Cancer Res 18:432–441

    Article  CAS  PubMed  Google Scholar 

  33. van Cruijsen H, Voest EE, Punt CJ, Hoekman K, Witteveen PO, Meijerink MR, Puchalski TA, Robertson J, Saunders O, Jurgensmeier JM et al (2010) Phase I evaluation of cediranib, a selective VEGFR signalling inhibitor, in combination with gefitinib in patients with advanced tumours. Eur J Cancer 46:901–911

    Article  CAS  PubMed  Google Scholar 

  34. Brennan RC, Furman W, Mao S, Wu J, Turner DC, Stewart CF, Santana V, McGregor LM (2014) Phase I dose escalation and pharmacokinetic study of oral gefitinib and irinotecan in children with refractory solid tumors. Cancer Chemother Pharmacol 74:1191–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jakacki RI, Hamilton M, Gilbertson RJ, Blaney SM, Tersak J, Krailo MD, Ingle AM, Voss SD, Dancey JE, Adamson PC (2008) Pediatric phase I and pharmacokinetic study of erlotinib followed by the combination of erlotinib and temozolomide: a Children's oncology group phase I consortium study. J Clin Oncol 26:4921–4927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Garrett TP, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO, Kofler M, Jorissen RN, Nice EC, Burgess AW, Ward CW (2003) The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol Cell 11:495–505

    Article  CAS  PubMed  Google Scholar 

  37. Burstein HJ (2005) The distinctive nature of HER2-positive breast cancers. N Engl J Med 353:1652–1654

    Article  CAS  PubMed  Google Scholar 

  38. Ahmed S, Sami A, Xiang J (2015) HER2-directed therapy: current treatment options for HER2-positive breast cancer. Breast Cancer 22:101–116

    Article  PubMed  Google Scholar 

  39. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, Gianni L, Baselga J, Bell R, Jackisch C, Cameron D, Dowsett M, Barrios CH, Steger G, Huang CS, Andersson M, Inbar M, Lichinitser M, Láng I, Nitz U, Iwata H, Thomssen C, Lohrisch C, Suter TM, Rüschoff J, Suto T, Greatorex V, Ward C, Straehle C, McFadden E, Dolci MS, Gelber RD, Herceptin Adjuvant (HERA) Trial Study Team (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353:1659–1672

    Article  CAS  Google Scholar 

  40. Petrelli F, Tomasello G, Barni S, Lonati V, Passalacqua R, Ghidini M (2017) Clinical and pathological characterization of HER2 mutations in human breast cancer: a systematic review of the literature. Breast Cancer Res Treat 166:339–349

    Article  CAS  Google Scholar 

  41. Mardanpour K, Rahbar M, Mardanpour S (2016) Coexistence of HER2, Ki67, and p53 in osteosarcoma: a strong prognostic factor. N Am J Med Sci 8:210–214

    Article  PubMed  PubMed Central  Google Scholar 

  42. Abdou AG, Kandil M, Asaad NY, Dawoud MM, Shahin AA, Abd Eldayem AF (2016) The prognostic role of Ezrin and HER2/neu expression in osteosarcoma. Appl Immunohistochem Mol Morphol 24:355–363

    Article  CAS  PubMed  Google Scholar 

  43. Scotlandi K, Manara MC, Hattinger CM, Benini S, Perdichizzi S, Pasello M, Bacci G, Zanella L, Bertoni F, Picci P, Serra M (2005) Prognostic and therapeutic relevance of HER2 expression in osteosarcoma and Ewing's sarcoma. Eur J Cancer 41:1349–1361

    Article  CAS  PubMed  Google Scholar 

  44. Gorlick R, Huvos AG, Heller G, Aledo A, Beardsley GP, Healey JH, Meyers PA (1999) Expression of HER2/erbB-2 correlates with survival in osteosarcoma. J Clin Oncol 17:2781–2788

    Article  CAS  Google Scholar 

  45. Thomas DG, Giordano TJ, Sanders D, Biermann JS, Baker L (2002) Absence of HER2/neu gene expression in osteosarcoma and skeletal Ewing's sarcoma. Clin Cancer Res 8:788–793

    CAS  PubMed  Google Scholar 

  46. Anninga JK, van de Vijver MJ, Cleton-Jansen AM, Kristel PM, Taminiau AH, Nooij M, Egeler RM, Hogendoorn PC (2004) Overexpression of the HER-2 oncogene does not play a role in high-grade osteosarcomas. Eur J Cancer 40:963–970

    Article  CAS  PubMed  Google Scholar 

  47. Tsai JY, Aviv H, Benevenia J, Chang VT, Patterson F, Aisner S, Hameed M (2004) HER-2/neu and p53 in osteosarcoma: an immunohistochemical and fluorescence in situ hybridization analysis. Cancer Investig 22:16–24

    Article  CAS  Google Scholar 

  48. Yalcin B, Gedikoglu G, Kutluk T, Varan A, Akyuz C, Buyukpamukcu M (2008) C-erbB-2 expression and prognostic significance in osteosarcoma. Pediatr Blood Cancer 51:222–227

    Article  PubMed  Google Scholar 

  49. Hughes DP, Thomas DG, Giordano TJ, McDonagh KT, Baker LH (2006) Essential erbB family phosphorylation in osteosarcoma as a target for CI-1033 inhibition. Pediatr Blood Cancer 46:614–623

    Article  PubMed  Google Scholar 

  50. Wang LF, Zhou Y, Xu YM, Qiu XC, Zhou BG, Wang F, Long H, Chen X, Yang TT, Ma BA, Fan QY, Yang AG (2009) A caspase-6 and anti-HER2 antibody chimeric tumor-targeted proapoptotic molecule decreased metastasis of human osteosarcoma. Cancer Investig 27:774–780

    Article  CAS  Google Scholar 

  51. Amiri-Kordestani L, Blumenthal GM, Xu QC, Zhang L, Tang SW, Ha L, Weinberg WC, Chi B, Candau-Chacon R, Hughes P, Russell AM, Miksinski SP, Chen XH, McGuinn WD, Palmby T, Schrieber SJ, Liu Q, Wang J, Song P, Mehrotra N, Skarupa L, Clouse K, al-Hakim A, Sridhara R, Ibrahim A, Justice R, Pazdur R, Cortazar P (2014) FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin Cancer Res 20:4436–4441

    Article  CAS  Google Scholar 

  52. Liu M, Sun LL, Li YJ, Li HY, Zhang J, Li BH, Ye ZM (2015) Trastuzumab enhanced the cytotoxicity of Vgamma9Vdelta2 T cells against zoledronate-sensitized osteosarcoma cells. Int Immunopharmacol 28:160–167

    Article  CAS  PubMed  Google Scholar 

  53. Ahmed N, Salsman VS, Yvon E, Louis CU, Perlaky L, Wels WS, Dishop MK, Kleinerman EE, Pule M, Rooney CM, Heslop HE, Gottschalk S (2009) Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression. Mol Ther 17:1779–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rainusso N, Brawley VS, Ghazi A, Hicks MJ, Gottschalk S, Rosen JM, Ahmed N (2012) Immunotherapy targeting HER2 with genetically modified T cells eliminates tumor-initiating cells in osteosarcoma. Cancer Gene Ther 19:212–217

    Article  CAS  PubMed  Google Scholar 

  55. Li L, Luo C, Song Z, Reyes-Vargas E, Clayton F, Huang J, Jensen P, Chen X (2018) Association of anti-HER2 antibody with graphene oxide for curative treatment of osteosarcoma. Nanomedicine 14:581–593

    Article  CAS  PubMed  Google Scholar 

  56. Mason NJ, Gnanandarajah JS, Engiles JB, Gray F, Laughlin D, Gaurnier-Hausser A, Wallecha A, Huebner M, Paterson Y (2016) Immunotherapy with a HER2-targeting Listeria induces HER2-specific immunity and demonstrates potential therapeutic effects in a phase I trial in canine osteosarcoma. Clin Cancer Res 22:4380–4390

    Article  CAS  PubMed  Google Scholar 

  57. Ebb D, Meyers P, Grier H, Bernstein M, Gorlick R, Lipshultz SE, Krailo M, Devidas M, Barkauskas DA, Siegal GP, Ferguson WS, Letson GD, Marcus K, Goorin A, Beardsley P, Marina N (2012) Phase II trial of trastuzumab in combination with cytotoxic chemotherapy for treatment of metastatic osteosarcoma with human epidermal growth factor receptor 2 overexpression: a report from the children's oncology group. J Clin Oncol 30:2545–2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ahmed N, Brawley VS, Hegde M, Robertson C, Ghazi A, Gerken C, Liu E, Dakhova O, Ashoori A, Corder A, Gray T, Wu MF, Liu H, Hicks J, Rainusso N, Dotti G, Mei Z, Grilley B, Gee A, Rooney CM, Brenner MK, Heslop HE, Wels WS, Wang LL, Anderson P, Gottschalk S (2015) Human epidermal growth factor receptor 2 (HER2) -specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol 33:1688–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jura N, Shan Y, Cao X, Shaw DE, Kuriyan J (2009) Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Proc Natl Acad Sci U S A 106:21608–21613

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gala K, Chandarlapaty S (2014) Molecular pathways: HER3 targeted therapy. Clin Cancer Res 20:1410–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schoeberl B, Pace EA, Fitzgerald JB, Harms BD, Xu L, Nie L, Linggi B, Kalra A, Paragas V, Bukhalid R et al (2009) Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor-PI3K axis. Sci Signal 2:ra31

    Article  CAS  PubMed  Google Scholar 

  62. Vaught DB, Stanford JC, Young C, Hicks DJ, Wheeler F, Rinehart C, Sanchez V, Koland J, Muller WJ, Arteaga CL, Cook RS (2012) HER3 is required for HER2-induced preneoplastic changes to the breast epithelium and tumor formation. Cancer Res 72:2672–2682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Berghoff AS, Bartsch R, Preusser M, Ricken G, Steger GG, Bago-Horvath Z, Rudas M, Streubel B, Dubsky P, Gnant M, Fitzal F, Zielinski CC, Birner P (2014) Co-overexpression of HER2/HER3 is a predictor of impaired survival in breast cancer patients. Breast 23:637–643

    Article  PubMed  Google Scholar 

  64. Tanner B, Hasenclever D, Stern K, Schormann W, Bezler M, Hermes M, Brulport M, Bauer A, Schiffer IB, Gebhard S, Schmidt M, Steiner E, Sehouli J, Edelmann J, Läuter J, Lessig R, Krishnamurthi K, Ullrich A, Hengstler JG (2006) ErbB-3 predicts survival in ovarian cancer. J Clin Oncol 24:4317–4323

    Article  CAS  PubMed  Google Scholar 

  65. Kumagai T, Tomita Y, Nakatsuka SI, Kimura M, Kunimasa K, Inoue T, Tamiya M, Nishino K, Susaki Y, Kusu T, Tokunaga T, Okami J, Higashiyama M, Imamura F (2018) HER3 expression is enhanced during progression of lung adenocarcinoma without EGFR mutation from stage 0 to IA1. Thorac Cancer 9:466–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jullien N, Dieudonne FX, Habel N, Marty C, Modrowski D, Patino A, Lecanda F, Severe N, Marie PJ (2013) ErbB3 silencing reduces osteosarcoma cell proliferation and tumor growth in vivo. Gene 521:55–61

    Article  CAS  PubMed  Google Scholar 

  67. LoRusso P, Janne PA, Oliveira M, Rizvi N, Malburg L, Keedy V, Yee L, Copigneaux C, Hettmann T, Wu CY, Ang A, Halim AB, Beckman RA, Beaupre D, Berlin J (2013) Phase I study of U3-1287, a fully human anti-HER3 monoclonal antibody, in patients with advanced solid tumors. Clin Cancer Res 19:3078–3087

    Article  CAS  PubMed  Google Scholar 

  68. Liu JF, Ray-Coquard I, Selle F, Poveda AM, Cibula D, Hirte H, Hilpert F, Raspagliesi F, Gladieff L, Harter P, Siena S, del Campo JM, Tabah-Fisch I, Pearlberg J, Moyo V, Riahi K, Nering R, Kubasek W, Adiwijaya B, Czibere A, Naumann RW, Coleman RL, Vergote I, MacBeath G, Pujade-Lauraine E (2016) Randomized phase II trial of Seribantumab in combination with paclitaxel in patients with advanced platinum-resistant or -refractory ovarian Cancer. J Clin Oncol 34:4345–4353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bandyopadhyay A, Favours E, Phelps DA, Pozo VD, Ghilu S, Kurmashev D, Michalek J, Trevino A, Guttridge D, London C, Hirotani K, Zhang L, Kurmasheva RT, Houghton PJ (2018) Evaluation of patritumab with or without erlotinib in combination with standard cytotoxic agents against pediatric sarcoma xenograft models. Pediatr Blood Cancer 65:e26870

    Article  CAS  Google Scholar 

  70. Rio C, Buxbaum JD, Peschon JJ, Corfas G (2000) Tumor necrosis factor-alpha-converting enzyme is required for cleavage of erbB4/HER4. J Biol Chem 275:10379–10387

    Article  CAS  PubMed  Google Scholar 

  71. Ni CY, Murphy MP, Golde TE, Carpenter G (2001) Gamma -secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science 294:2179–2181

    Article  CAS  PubMed  Google Scholar 

  72. Linggi B, Cheng QC, Rao AR, Carpenter G (2006) The ErbB-4 s80 intracellular domain is a constitutively active tyrosine kinase. Oncogene 25:160–163

    Article  CAS  PubMed  Google Scholar 

  73. Gothlin Eremo A, Tina E, Wegman P, Stal O, Fransen K, Fornander T, Wingren S (2015) HER4 tumor expression in breast cancer patients randomized to treatment with or without tamoxifen. Int J Oncol 47:1311–1320

    Article  CAS  PubMed  Google Scholar 

  74. Naresh A, Thor AD, Edgerton SM, Torkko KC, Kumar R, Jones FE (2008) The HER4/4ICD estrogen receptor coactivator and BH3-only protein is an effector of tamoxifen-induced apoptosis. Cancer Res 68:6387–6395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Paatero I, Lassus H, Junttila TT, Kaskinen M, Butzow R, Elenius K (2013) CYT-1 isoform of ErbB4 is an independent prognostic factor in serous ovarian cancer and selectively promotes ovarian cancer cell growth in vitro. Gynecol Oncol 129:179–187

    Article  CAS  PubMed  Google Scholar 

  76. Kim JY, Jung HH, Do IG, Bae S, Lee SK, Kim SW, Lee JE, Nam SJ, Ahn JS, Park YH, Im YH (2016) Prognostic value of ERBB4 expression in patients with triple negative breast cancer. BMC Cancer 16:138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Das PM, Thor AD, Edgerton SM, Barry SK, Chen DF, Jones FE (2010) Reactivation of epigenetically silenced HER4/ERBB4 results in apoptosis of breast tumor cells. Oncogene 29:5214–5219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang H, Sun W, Sun M, Fu Z, Zhou C, Wang C, Zuo D, Zhou Z, Wang G, Zhang T et al (1864) HER4 promotes cell survival and chemoresistance in osteosarcoma via interaction with NDRG1. Biochim Biophys Acta 2018:1839–1849

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Qing-shui Yin for the discussion of the manuscript.

Availability of data and materials

Not applicable.

Funding

This work was supported by Grants from National Natural Science Foundation of China (No. 81602195), Natural Science Foundation of Guangdong Province (No.2017A030313531), Shenzhen Science and Technology Innovation Commission (No. JCYJ20160425104157183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Ethics declarations

Competing interests

No conflict of interest exits in the submission of this manuscript, and it has been approved by all authors for publication.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhao, Hf., Yao, Tf. et al. Advanced development of ErbB family-targeted therapies in osteosarcoma treatment. Invest New Drugs 37, 175–183 (2019). https://doi.org/10.1007/s10637-018-0684-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-018-0684-8

Keywords

Navigation