Skip to main content

Advertisement

Log in

Identification of differentially expressed genes and signaling pathways using bioinformatics in interstitial lung disease due to tyrosine kinase inhibitors targeting the epidermal growth factor receptor

  • SHORT REPORT
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Interstitial lung disease (ILD) is a rare but lethal adverse effect of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) treatment. The specific mechanism of this disease is not fully understood. To systematically analyze genes associated with EGFR-TKI induced ILD, gene data of EGFR-TKI induced ILD were extracted initially using text mining, and then the intersection between genes from text mining and Gene Expression Omnibus (GEO) dataset was taken for further protein-protein interaction (PPI) analysis using String-bd database. Go ontology (GO) and pathway enrichment analysis was also conducted based on Database of Annotation, Visualization and Integrated Discovery (DAVID) platform. The PPI network generated by STRING was visualized by Cytoscape, and the topology scores, functional regions and gene annotations were analyzed using plugins of CytoNCA, molecular complex detection (MCODE) and ClueGo. 37 genes were identified as EGFR-TKI induced ILD related. Gene enrichment analysis yield 18 enriched GO terms and 12 associated pathways. A PPI network that included 199 interactions for a total of 35 genes was constructed. Ten genes were selected as hub genes using CytoNCA plugin, and four highly connected clusters were identified using MCODE plugin. GO and pathway annotation analysis for the cluster one revealed that five genes were associated with either response to dexamethasone or with lung fibrosis, including CTGF, CCL2, IGF1, EGFR and ICAM1. Our data might be useful to reveal the pathological mechanisms of EGFR-TKI induced ILD and provide evidence for the diagnosis and treatment in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen W, Zheng R, Zeng H, Zhang S (2015) Epidemiology of lung cancer in China. Thorac cancer 6(2):209–215

    Article  Google Scholar 

  2. Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman J, Chirieac LR, D'Amico TA, Decamp MM, Dilling TJ, Dobelbower M (2017) Non-small cell lung Cancer, version 5.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw 15(4):504–535

    Article  Google Scholar 

  3. Kimura K, Takayanagi R, Fukushima T, Yamada Y (2017) Theoretical method for evaluation of therapeutic effects and adverse effects of epidermal growth factor receptor tyrosine kinase inhibitors in clinical treatment. Med Oncol 34(10):178

    Article  Google Scholar 

  4. Bagnato G, Harari S (2015) Cellular interactions in the pathogenesis of interstitial lung diseases. European respiratory review : an official journal of the European Respiratory Society 24(135):102–114

    Article  Google Scholar 

  5. Ramos-Casals M, Perez-Alvarez R, Perez-de-Lis M, Xaubet A, Bosch X (2011) Pulmonary disorders induced by monoclonal antibodies in patients with rheumatologic autoimmune diseases. Am J Med 124(5):386–394

    Article  CAS  Google Scholar 

  6. Peerzada MM, Spiro TP, Daw HA (2010) Pulmonary toxicities of biologics: a review. Anti-Cancer Drugs 21(2):131–139

    Article  CAS  Google Scholar 

  7. Davies EC, Green CF, Taylor S, Williamson PR, Mottram DR, Pirmohamed M (2009) Adverse drug reactions in hospital in-patients: a prospective analysis of 3695 patient-episodes. PLoS One 4(2):e4439

    Article  Google Scholar 

  8. Bast A, Weseler AR, Haenen GR, den Hartog GJ (2010) Oxidative stress and antioxidants in interstitial lung disease. Curr Opin Pulm Med 16(5):516–520

    Article  CAS  Google Scholar 

  9. de Boer WI, Hau CM, van Schadewijk A, Stolk J, van Krieken JHJM, Hiemstra PS (2006) Expression of epidermal growth factors and their receptors in the bronchial epithelium of subjects with chronic obstructive pulmonary disease. Am J Clin Pathol 125(2):184–192

    Article  Google Scholar 

  10. Takeda M, Okamoto I, Nakagawa K (2015) Pooled safety analysis of EGFR-TKI treatment for EGFR mutation-positive non-small cell lung cancer. Lung Cancer 88(1):74–79

    Article  Google Scholar 

  11. Sakuma K, Nakamura H, Nakamura T, Hoshino Y, Ueda S, Ichikawa M, Tabata C, Fujita S, Masago K, Yodoi J et al (2007) Elevation of serum Thioredoxin in patients with Gefitinib-induced interstitial lung disease. Intern Med 46(23):1905–1909

    Article  Google Scholar 

  12. Inzalkar S, Sharma J (2015) A survey on text mining- techniques and application. Int J Eng Sci 24:1–14

    Google Scholar 

  13. Baran J, Gerner M, Haeussler M, Nenadic G, Bergman CM (2011) pubmed2ensembl: a resource for mining the biological literature on genes. PLoS One 6(9):e24716

    Article  CAS  Google Scholar 

  14. Lindahl GE, Stock CJ, Xu SW, Leoni P, Sestini P, Howat SL, Bou-Gharios G, Nicholson AG, Denton CP, Grutters JC (2013) Microarray profiling reveals suppressed interferon stimulated gene program in fibroblasts from scleroderma-associated interstitial lung disease. Respir Res 14(1):1–14

    Article  Google Scholar 

  15. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P (2017) The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res 45(Database issue):D362–D368

    Article  CAS  Google Scholar 

  16. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  Google Scholar 

  17. Tang Y, Li M, Wang J, Pan Y (2015) Wu F-X: CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems 127:67–72

    Article  CAS  Google Scholar 

  18. Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S, Pico AR, Bader GD, Ideker T (2012) A travel guide to Cytoscape plugins. Nat Methods 9(11):1069–1076

    Article  CAS  Google Scholar 

  19. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pagès F, Trajanoski Z, Galon J (2009) ClueGO a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25(8):1091–1093

    Article  CAS  Google Scholar 

  20. Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, Caudy M, Garapati P, Gillespie M, Kamdar MR (2014) The Reactome pathway knowledgebase. Nucleic Acids Res 42(Database issue):472–477

    Article  Google Scholar 

  21. Huang DW, Sherman BT, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44

    Article  Google Scholar 

  22. Casoni GL, Tomassetti S, Cavazza A, Colby TV, Dubini A, Ryu JH, Carretta E, Tantalocco P, Piciucchi S, Ravaglia C (2014) Transbronchial lung cryobiopsy in the diagnosis of fibrotic interstitial lung diseases. PLoS One 9(2):e86716

    Article  Google Scholar 

  23. Schwaiblmair M, Behr W, Haeckel T, Markl B, Foerg W, Berghaus T (2012) Drug induced interstitial lung disease. Open Respir Med J 6:63–74

    Article  Google Scholar 

  24. Ashiq U, Jamal RA, Mesaik MA, Mahroof-Tahir M, Shahid S, Khan KM (2014) Synthesis, immunomodulation and cytotoxic effects of vanadium (IV) complexes. Med Chem 10(3):287–299

    Article  CAS  Google Scholar 

  25. F N, A O, G HC (2011) K N: proteomic biomarkers for acute interstitial lung disease in gefitinib-treated Japanese lung cancer patients. PLoS One 6(7):e22062

    Article  Google Scholar 

  26. Tsuboi M, Le Chevalier T (2006) Interstitial lung disease in patients with non-small-cell lung cancer treated with epidermal growth factor receptor inhibitors. Med Oncol 23(2):161–170

    Article  CAS  Google Scholar 

  27. Drakopanagiotakis F, Xifteri A, Polychronopoulos V, Bouros D (2008) Apoptosis in lung injury and fibrosis. Eur Respir J 32(6):1631

    Article  CAS  Google Scholar 

  28. Costa A, Scholer-Dahirel A, Mechta-Grigoriou F (2014) The role of reactive oxygen species and metabolism on cancer cells and their microenvironment. Semin Cancer Biol 25:23–32

    Article  CAS  Google Scholar 

  29. Archontogeorgis K, Steiropoulos P, Tzouvelekis A, Nena E, Bouros D (2012) Lung cancer and interstitial lung diseases: a systematic review. Pulm Med 2012(315918):1–11

    Article  Google Scholar 

  30. Ando M, Okamoto I, Yamamoto N, Takeda K, Tamura K, Seto T, Ariyoshi Y, Fukuoka M (2006) Predictive factors for interstitial lung disease, antitumor response, and survival in non-small-cell lung cancer patients treated with gefitinib. J Clin Oncol: Off J Am Soc Clin Oncol 24(16):2549–2556

    Article  CAS  Google Scholar 

  31. Akamatsu H, Inoue A, Mitsudomi T, Kobayashi K, Nakagawa K, Mori K, Nukiwa T, Nakanishi Y, Yamamoto N (2013) Interstitial lung disease associated with gefitinib in Japanese patients with EGFR-mutated non-small-cell lung cancer: combined analysis of two phase III trials (NEJ 002 and WJTOG 3405). Jpn J Clin Oncol 43(6):664–668

    Article  Google Scholar 

  32. Fischer A, West SG, Swigris JJ, Brown KK, Bois RMD (2013) Connective-tissue disease-associated InterstitialLung disease. J Intensive Care Med 84(4):498

    Google Scholar 

  33. Huang SK, Wettlaufer SH, Chung J, Peters-Golden M (2008) Prostaglandin E2 inhibits specific lung fibroblast functions via selective actions of PKA and Epac-1. Am J Respir Cell Mol Biol 39(4):482–489

    Article  CAS  Google Scholar 

  34. Yoshida K, Kuwano K, Hagimoto N, Watanabe K, Matsuba T, Fujita M, Inoshima I, Hara N (2002) MAP kinase activation and apoptosis in lung tissues from patients with idiopathic pulmonary fibrosis. J Pathol 198(3):388–396

    Article  CAS  Google Scholar 

  35. Goitre L, Trapani E, Trabalzini L, Retta SF (2014) The Ras Superfamily of Small GTPases: The Unlocked Secrets. Ras Signaling 1120:1–18

    Article  CAS  Google Scholar 

  36. Hashimoto N, Phan SH, Imaizumi K, Matsuo M, Nakashima H, Kawabe T, Shimokata K, Hasegawa Y (2010) Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 43(2):161–172

    Article  CAS  Google Scholar 

  37. Fernandez IE, Eickelberg O (2012) The impact of TGF-β on lung fibrosis: from targeting to biomarkers. Proc Am Thorac Soc 9(3):111–116

    Article  CAS  Google Scholar 

  38. Kulkarni AA, Thatcher TH, Olsen KC, Maggirwar SB, Phipps RP, Sime PJ (2011) PPAR-γ ligands repress TGFβ-induced myofibroblast differentiation by targeting the PI3K/Akt pathway: implications for therapy of fibrosis. PloS One 6(1):e15909

    Article  CAS  Google Scholar 

  39. Andrianifahanana M, Wilkes MC, Gupta SK, Rahimi RA, Repellin CE, Edens M, Wittenberger J, Yin X, Maidl E, Becker J, Leof EB (2013) Profibrotic TGFbeta responses require the cooperative action of PDGF and ErbB receptor tyrosine kinases. FASEB journal 27(11):4444–4454

    Article  CAS  Google Scholar 

  40. Hung CF, Rohani MG, Lee SS, Chen P, Schnapp LM (2013) Role of IGF-1 pathway in lung fibroblast activation. Resp Res 14:102

    Article  Google Scholar 

  41. Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interf Cytok Res 29(6):313–326

    Article  CAS  Google Scholar 

  42. Assassi S, Wu M, Tan FK, Chang J, Graham TA, Furst DE, Khanna D, Charles J, Ferguson EC, Feghali-Bostwick C et al (2013) Skin gene expression correlates of severity of interstitial lung disease in systemic sclerosis. Arthritis Rheum 65(11):2917–2927

    Article  CAS  Google Scholar 

  43. Anderssonsjöland A, de Alba CG, Nihlberg K, Becerril C, Ramírez R, Pardo A, Westergrenthorsson G, Selman M (2008) Fibrocytes are a potential source of lung fibroblasts in idiopathic pulmonary fibrosis. Int J Biochem Cell Biol 40(10):2129

    Article  Google Scholar 

  44. Jiang C, Liu G, Luckhardt T, Antony V, Zhou Y, Carter AB, Thannickal VJ, Liu RM (2017) Serpine 1 induces alveolar type II cell senescence through activating p53-p21-Rb pathway in fibrotic lung disease. Aging Cell 16(5):1114–1124

    Article  CAS  Google Scholar 

  45. Harrison NK (2013) Cough, sarcoidosis and idiopathic pulmonary fibrosis: raw nerves and bad vibrations. Cough 9(1):9

    Article  Google Scholar 

  46. Kilic A, Sonar SS, Yildirim AO, Fehrenbach H, Nockher WA, Renz H (2011) Nerve growth factor induces type III collagen production in chronic allergic airway inflammation. J Allergy Clin Immunol 128(5):1058–1066 e1051–1054

    Article  CAS  Google Scholar 

  47. Richards TJ, Kaminski N, Baribaud F, Flavin S, Brodmerkel C, Horowitz D, Li K, Choi J, Vuga LJ, Lindell KO (2012) Peripheral blood proteins predict mortality in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 185(1):67–76

    Article  CAS  Google Scholar 

  48. Ando M, Miyazaki E, Ito T, Hiroshige S, Nureki SI, Ueno T, Takenaka R, Fukami T, Kumamoto T (2010) Significance of serum vascular endothelial growth factor level in patients with idiopathic pulmonary fibrosis. Lung 188(3):247–252

    Article  CAS  Google Scholar 

  49. Kennedy B, Branagan P, Moloney F, Haroon M, O'Connell OJ, O'Connor TM, O'Regan K, Harney S, Henry MT (2015) Biomarkers to identify ILD and predict lung function decline in scleroderma lung disease or idiopathic pulmonary fibrosis. Sarcoidosis Vasculitis & Diffuse Lung Diseases Official Journal of Wasog 32(3):228

    Google Scholar 

  50. Yamashita M, Mouri T, Niisato M, Nitanai H, Kobayashi H, Ogasawara M, Endo R, Konishi K, Sugai T, Sawai T (2015) Lymphangiogenic factors are associated with the severity of hypersensitivity pneumonitis. Bmj Open Respiratory Research 2(1):e000085

    Article  Google Scholar 

  51. Lipson KE, Wong C, Teng Y, Spong S (2012) CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair 20125(Suppl 1):S24

    Article  Google Scholar 

  52. Kono M, Nakamura Y, Suda T, Kato M, Kaida Y, Dai H, Inui N, Hamada E, Miyazaki O, Kurashita S (2011) Plasma CCN2 (connective tissue growth factor; CTGF) is a potential biomarker in idiopathic pulmonary fibrosis (IPF). Clin Chim Acta 412(23–24):2211–2215

    Article  CAS  Google Scholar 

  53. Campbell P, Morton PE, Takeichi T, Salam A, Roberts N, Proudfoot LE, Mellerio JE, Aminu K, Wellington C, Patil SN et al (2014) Epithelial inflammation resulting from an inherited loss-of-function mutation in EGFR. J Investig Dermatol 134(10):2570–2578

    Article  CAS  Google Scholar 

  54. Andrianifahanana M, Wilkes MC, Gupta SK, Rahimi RA, Repellin CE, Edens M, Wittenberger J, Yin X, Maidl E, Becker J (2013) Profibrotic TGFβ responses require the cooperative action of PDGF and ErbB receptor tyrosine kinases. Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology 27(11):4444–4454

    Article  CAS  Google Scholar 

  55. Harada C, Kawaguchi T, Ogatasuetsugu S, Yamada M, Hamada N, Maeyama T, Souzaki R, Tajiri T, Taguchi T, Kuwano K (2011) EGFR tyrosine kinase inhibition worsens acute lung injury in mice with repairing airway epithelium. Am J Respir Crit Care Med 183(6):743–751

    Article  CAS  Google Scholar 

  56. Matsumoto Y, Kawaguchi T, Yamamoto N, Sawa K, Yoshimoto N, Suzumura T, Watanabe T, Mitsuoka S, Asai K, Kimura T (2017) Interstitial lung disease induced by Osimertinib for epidermal growth factor receptor (EGFR) T790M-positive non-small cell lung Cancer. Intern Med 56(17):2325–2328

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Yuan Lu, Ang Li, Hu Zhao and Xinling Ren conceived and designed the study. Yuan Lu and Ang Li were responsible for the collection, analysis and interpretation of the data. Yuan Lu, Wen Zhao and Ping Tang were responsible for data visualization. Yuan Lu, Ang Li, XiaoFeng Lai drafted the manuscript, and all authors critically revised it for important intellectual content. Xinling Ren obtained funding, and Hu Zhao was responsible for logistic support. All authors had final approval of the submitted manuscript.

Corresponding authors

Correspondence to Hu Zhao or Xinling Ren.

Ethics declarations

Funding

This study was funded by National Natural Science Foundation of China (No. 81871880), and Director Fund of Shenzhen University General Hospital (No. 0000040546).

Conflict of interest

All authors have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

ESM 1

(DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Li, A., Lai, X. et al. Identification of differentially expressed genes and signaling pathways using bioinformatics in interstitial lung disease due to tyrosine kinase inhibitors targeting the epidermal growth factor receptor. Invest New Drugs 37, 384–400 (2019). https://doi.org/10.1007/s10637-018-0664-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-018-0664-z

Keywords

Navigation