Skip to main content

Advertisement

Log in

Phase I study combining the aurora kinase a inhibitor alisertib with mFOLFOX in gastrointestinal cancer

  • PHASE I STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Overexpression and cellular mis-localization of aurora kinase A (AURKA) in gastrointestinal cancers results in chromosomal instability, activation of multiple oncogenic pathways, and inhibition of pro-apoptotic signaling. Inhibition of AURKA causes mitotic delays, severe chromosome congression, and activation of p53/p73 leading to cell death. Our preclinical data showed cooperative activity with the AURKA inhibitor alisertib and platinum agents in cell lines and xenografts, and suggested an optimal treatment window. Therefore, this study was designed to determine the maximum-tolerated dose (MTD) of alisertib in combination with modified FOLFOX (mFOLFOX), as this is a standard platinum-based therapy for gastrointestinal cancers. Standard 3 + 3 dose escalation was used, where the starting dose of alisertib was 10 mg twice daily (Days 1–3), with leucovorin (400 mg/m2) and oxaliplatin (85 mg/m2) on Day 2 followed by continuous 46-h 5-FU (2400 mg/m2) infusion on Days 2–4 in 14-day cycles. Fourteen patients with advanced gastrointestinal cancers were enrolled and two doses explored; two patients were not evaluable for dose-limiting toxicity (DLT) and replaced. Two patients experienced DLTs at 20 mg of alisertib (Grade 3 fatigue (n = 2); Grade 3 nausea, vomiting, dehydration with hospitalization (n = 1)). MTD was 10 mg alisertib with 85 mg/m2 oxaliplatin and 2400 mg/m2 5-FU. Most frequent toxicities were nausea (57%), diarrhea, fatigue, neuropathy, and vomiting (43%), and anorexia and anemia (36%); most were Grade 1–2. One patient with colorectal cancer had a partial response of 12 evaluable patients, and four patients had stable disease. Alisertib in combination with mFOLFOX did not demonstrate unexpected side effects, but the regimen was only tolerable at the lowest dose investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Boss DS, Beijnen JH, Schellens JH (2009) Clinical experience with aurora kinase inhibitors: a review. Oncologist 14(8):780–793. https://doi.org/10.1634/theoncologist.2009-0019

    Article  CAS  PubMed  Google Scholar 

  2. Giet R, Prigent C (1999) Aurora/Ipl1p-related kinases, a new oncogenic family of mitotic serine-threonine kinases. J Cell Sci 112(Pt 21):3591–3601

    CAS  PubMed  Google Scholar 

  3. Crane R, Gadea B, Littlepage L, Wu H, Ruderman JV (2004) Aurora A, meiosis and mitosis. Biol Cell 96(3):215–229. https://doi.org/10.1016/j.biolcel.2003.09.008

    Article  CAS  PubMed  Google Scholar 

  4. Hannak E, Kirkham M, Hyman AA, Oegema K (2001) Aurora-a kinase is required for centrosome maturation in Caenorhabditis elegans. J Cell Biol 155(7):1109–1116. https://doi.org/10.1083/jcb.200108051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hoar K, Chakravarty A, Rabino C, Wysong D, Bowman D, Roy N, Ecsedy JA (2007) MLN8054, a small-molecule inhibitor of aurora a, causes spindle pole and chromosome congression defects leading to aneuploidy. Mol Cell Biol 27(12):4513–4525. https://doi.org/10.1128/MCB.02364-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marumoto T, Honda S, Hara T, Nitta M, Hirota T, Kohmura E, Saya H (2003) Aurora-a kinase maintains the fidelity of early and late mitotic events in HeLa cells. J Biol Chem 278(51):51786–51795. https://doi.org/10.1074/jbc.M306275200

    Article  CAS  PubMed  Google Scholar 

  7. Glover DM, Leibowitz MH, McLean DA, Parry H (1995) Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81(1):95–105

    Article  CAS  PubMed  Google Scholar 

  8. Katayama H, Zhou H, Li Q, Tatsuka M, Sen S (2001) Interaction and feedback regulation between STK15/BTAK/aurora-a kinase and protein phosphatase 1 through mitotic cell division cycle. J Biol Chem 276(49):46219–46224. https://doi.org/10.1074/jbc.M107540200

    Article  CAS  PubMed  Google Scholar 

  9. Hirota T, Kunitoku N, Sasayama T, Marumoto T, Zhang D, Nitta M, Hatakeyama K, Saya H (2003) Aurora-a and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 114(5):585–598

    Article  CAS  PubMed  Google Scholar 

  10. Cowley DO, Rivera-Perez JA, Schliekelman M, He YJ, Oliver TG, Lu L, O'Quinn R, Salmon ED, Magnuson T, Van Dyke T (2009) Aurora-a kinase is essential for bipolar spindle formation and early development. Mol Cell Biol 29(4):1059–1071. https://doi.org/10.1128/MCB.01062-08

    Article  CAS  PubMed  Google Scholar 

  11. Lu LY, Wood JL, Ye L, Minter-Dykhouse K, Saunders TL, Yu X, Chen J (2008) Aurora a is essential for early embryonic development and tumor suppression. J Biol Chem 283(46):31785–31790. https://doi.org/10.1074/jbc.M805880200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yoon Y, Cowley DO, Gallant J, Jones SN, Van Dyke T, Rivera-Perez JA (2012) Conditional aurora a deficiency differentially affects early mouse embryo patterning. Dev Biol 371(1):77–85. https://doi.org/10.1016/j.ydbio.2012.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Otto T, Horn S, Brockmann M, Eilers U, Schuttrumpf L, Popov N, Kenney AM, Schulte JH, Beijersbergen R, Christiansen H, Berwanger B, Eilers M (2009) Stabilization of N-Myc is a critical function of aurora a in human neuroblastoma. Cancer Cell 15(1):67–78. https://doi.org/10.1016/j.ccr.2008.12.005

    Article  CAS  PubMed  Google Scholar 

  14. Dar AA, Belkhiri A, El-Rifai W (2009) The aurora kinase a regulates GSK-3beta in gastric cancer cells. Oncogene 28(6):866–875. https://doi.org/10.1038/onc.2008.434

    Article  CAS  PubMed  Google Scholar 

  15. Bischoff JR, Anderson L, Zhu Y, Mossie K, Ng L, Souza B, Schryver B, Flanagan P, Clairvoyant F, Ginther C, Chan CS, Novotny M, Slamon DJ, Plowman GD (1998) A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 17(11):3052–3065. https://doi.org/10.1093/emboj/17.11.3052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang X, Zhou YX, Qiao W, Tominaga Y, Ouchi M, Ouchi T, Deng CX (2006) Overexpression of aurora kinase a in mouse mammary epithelium induces genetic instability preceding mammary tumor formation. Oncogene 25(54):7148–7158. https://doi.org/10.1038/sj.onc.1209707

    Article  CAS  PubMed  Google Scholar 

  17. Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A, Brinkley BR, Sen S (1998) Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20(2):189–193. https://doi.org/10.1038/2496

    Article  CAS  PubMed  Google Scholar 

  18. Nishida N, Nagasaka T, Kashiwagi K, Boland CR, Goel A (2007) High copy amplification of the aurora-a gene is associated with chromosomal instability phenotype in human colorectal cancers. Cancer Biol Ther 6(4):525–533

    Article  CAS  PubMed  Google Scholar 

  19. Li D, Zhu J, Firozi PF, Abbruzzese JL, Evans DB, Cleary K, Friess H, Sen S (2003) Overexpression of oncogenic STK15/BTAK/aurora a kinase in human pancreatic cancer. Clin Cancer Res 9(3):991–997

    CAS  PubMed  Google Scholar 

  20. Kamada K, Yamada Y, Hirao T, Fujimoto H, Takahama Y, Ueno M, Takayama T, Naito A, Hirao S, Nakajima Y (2004) Amplification/overexpression of aurora-a in human gastric carcinoma: potential role in differentiated type gastric carcinogenesis. Oncol Rep 12(3):593–599

    CAS  PubMed  Google Scholar 

  21. Yang SB, Zhou XB, Zhu HX, Quan LP, Bai JF, He J, Gao YN, Cheng SJ, Xu NZ (2007) Amplification and overexpression of aurora-a in esophageal squamous cell carcinoma. Oncol Rep 17(5):1083–1088

    CAS  PubMed  Google Scholar 

  22. Rojanala S, Han H, Munoz RM, Browne W, Nagle R, Von Hoff DD, Bearss DJ (2004) The mitotic serine threonine kinase, Aurora-2, is a potential target for drug development in human pancreatic cancer. Mol Cancer Ther 3(4):451–457

    CAS  PubMed  Google Scholar 

  23. Jeng YM, Peng SY, Lin CY, Hsu HC (2004) Overexpression and amplification of aurora-a in hepatocellular carcinoma. Clin Cancer Res 10(6):2065–2071

    Article  CAS  PubMed  Google Scholar 

  24. Dar AA, Zaika A, Piazuelo MB, Correa P, Koyama T, Belkhiri A, Washington K, Castells A, Pera M, El-Rifai W (2008) Frequent overexpression of aurora kinase a in upper gastrointestinal adenocarcinomas correlates with potent antiapoptotic functions. Cancer 112(8):1688–1698. https://doi.org/10.1002/cncr.23371

    Article  CAS  PubMed  Google Scholar 

  25. Baba Y, Nosho K, Shima K, Irahara N, Kure S, Toyoda S, Kirkner GJ, Goel A, Fuchs CS, Ogino S (2009) Aurora-a expression is independently associated with chromosomal instability in colorectal cancer. Neoplasia 11(5):418–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cammareri P, Scopelliti A, Todaro M, Eterno V, Francescangeli F, Moyer MP, Agrusa A, Dieli F, Zeuner A, Stassi G (2010) Aurora-a is essential for the tumorigenic capacity and chemoresistance of colorectal cancer stem cells. Cancer Res 70(11):4655–4665. https://doi.org/10.1158/0008-5472.CAN-09-3953

    Article  CAS  PubMed  Google Scholar 

  27. Manfredi MG, Ecsedy JA, Chakravarty A, Silverman L, Zhang M, Hoar KM, Stroud SG, Chen W, Shinde V, Huck JJ, Wysong DR, Janowick DA, Hyer ML, Leroy PJ, Gershman RE, Silva MD, Germanos MS, Bolen JB, Claiborne CF, Sells TB (2011) Characterization of alisertib (MLN8237), an investigational small-molecule inhibitor of aurora a kinase using novel in vivo pharmacodynamic assays. Clin Cancer Res 17(24):7614–7624. https://doi.org/10.1158/1078-0432.CCR-11-1536

    Article  CAS  PubMed  Google Scholar 

  28. Huck JJ, Zhang M, Hyer ML, Manfredi MG (2008) Anti-tumor activity of the aurora a inhibitor MLN8237 in diffuse large B-cell lymphoma preclinical models. Blood 112:A1592

    Google Scholar 

  29. Sehdev V, Katsha A, Arras J, Peng D, Soutto M, Ecsedy J, Zaika A, Belkhiri A, El-Rifai W (2014) HDM2 regulation by AURKA promotes cell survival in gastric cancer. Clin Cancer Res 20(1):76–86. https://doi.org/10.1158/1078-0432.CCR-13-1187

    Article  CAS  PubMed  Google Scholar 

  30. Katsha A, Soutto M, Sehdev V, Peng D, Washington MK, Piazuelo MB, Tantawy MN, Manning HC, Lu P, Shyr Y, Ecsedy J, Belkhiri A, El-Rifai W (2013) Aurora kinase a promotes inflammation and tumorigenesis in mice and human gastric neoplasia. Gastroenterology 145(6):1312–1322 e1–8. https://doi.org/10.1053/j.gastro.2013.08.050

    Article  CAS  PubMed  Google Scholar 

  31. Dar AA, Belkhiri A, Ecsedy J, Zaika A, El-Rifai W (2008) Aurora kinase a inhibition leads to p73-dependent apoptosis in p53-deficient cancer cells. Cancer Res 68(21):8998–9004. https://doi.org/10.1158/0008-5472.CAN-08-2658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qi W, Cooke LS, Liu X, Rimsza L, Roe DJ, Manziolli A, Persky DO, Miller TP, Mahadevan D (2011) Aurora inhibitor MLN8237 in combination with docetaxel enhances apoptosis and anti-tumor activity in mantle cell lymphoma. Biochem Pharmacol 81(7):881–890. https://doi.org/10.1016/j.bcp.2011.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang M, Huck J, Hyer M, Ecsedy J, Manfredi M (2009) Effect of aurora a kinase inhibitor MLN8237 combined with rituximab on antitumor activity in preclinical B-cell non-Hodgkin's lymphoma models. J Clin Oncol 27(15_suppl):8553–8553. https://doi.org/10.1200/jco.2009.27.15_suppl.8553

    Article  Google Scholar 

  34. Sehdev V, Peng D, Soutto M, Washington MK, Revetta F, Ecsedy J, Zaika A, Rau TT, Schneider-Stock R, Belkhiri A, El-Rifai W (2012) The aurora kinase a inhibitor MLN8237 enhances cisplatin-induced cell death in esophageal adenocarcinoma cells. Mol Cancer Ther 11(3):763–774. https://doi.org/10.1158/1535-7163.MCT-11-0623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sehdev V, Soutto M, Belkhiri A, Ecsedy J, El-Rifai W (2012) Effect of a combination of aurora kinase a inhibitor MLN-8237 and cisplatin on gastrointestinal tumors. J Clin Oncol 30(suppl 4; abstr 58):58

    Article  Google Scholar 

  36. Chibaudel B, Maindrault-Goebel F, Lledo G, Mineur L, Andre T, Bennamoun M, Mabro M, Artru P, Carola E, Flesch M, Dupuis O, Colin P, Larsen AK, Afchain P, Tournigand C, Louvet C, de Gramont A (2009) Can chemotherapy be discontinued in unresectable metastatic colorectal cancer? The GERCOR OPTIMOX2 study. J Clin Oncol 27(34):5727–5733. https://doi.org/10.1200/JCO.2009.23.4344

    Article  CAS  PubMed  Google Scholar 

  37. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67(1):7–30. https://doi.org/10.3322/caac.21387

    Article  PubMed  Google Scholar 

  38. American Cancer Society. Cancer Facts & Figures 2017. (2017). Atlanta: American Cancer Society

  39. Melichar B, Adenis A, Lockhart AC, Bennouna J, Dees EC, Kayaleh O, Obermannova R, DeMichele A, Zatloukal P, Zhang B, Ullmann CD, Schusterbauer C (2015) Safety and activity of alisertib, an investigational aurora kinase a inhibitor, in patients with breast cancer, small-cell lung cancer, non-small-cell lung cancer, head and neck squamous-cell carcinoma, and gastro-oesophageal adenocarcinoma: a five-arm phase 2 study. Lancet Oncol 16(4):395–405. https://doi.org/10.1016/S1470-2045(15)70051-3

    Article  CAS  PubMed  Google Scholar 

  40. Matulonis UA, Sharma S, Ghamande S, Gordon MS, Del Prete SA, Ray-Coquard I, Kutarska E, Liu H, Fingert H, Zhou X, Danaee H, Schilder RJ (2012) Phase II study of MLN8237 (alisertib), an investigational aurora a kinase inhibitor, in patients with platinum-resistant or -refractory epithelial ovarian, fallopian tube, or primary peritoneal carcinoma. Gynecol Oncol 127(1):63–69. https://doi.org/10.1016/j.ygyno.2012.06.040

    Article  CAS  PubMed  Google Scholar 

  41. Cervantes A, Elez E, Roda D, Ecsedy J, Macarulla T, Venkatakrishnan K, Rosello S, Andreu J, Jung J, Sanchis-Garcia JM, Piera A, Blasco I, Manos L, Perez-Fidalgo JA, Fingert H, Baselga J, Tabernero J (2012) Phase I pharmacokinetic/pharmacodynamic study of MLN8237, an investigational, oral, selective aurora a kinase inhibitor, in patients with advanced solid tumors. Clin Cancer Res 18(17):4764–4774. https://doi.org/10.1158/1078-0432.CCR-12-0571

    Article  CAS  PubMed  Google Scholar 

  42. Graff JN, Higano CS, Hahn NM, Taylor MH, Zhang B, Zhou X, Venkatakrishnan K, Leonard EJ, Sarantopoulos J (2016) Open-label, multicenter, phase 1 study of alisertib (MLN8237), an aurora a kinase inhibitor, with docetaxel in patients with solid tumors. Cancer 122(16):2524–2533. https://doi.org/10.1002/cncr.30073

    Article  CAS  PubMed  Google Scholar 

  43. DuBois SG, Marachelian A, Fox E, Kudgus RA, Reid JM, Groshen S, Malvar J, Bagatell R, Wagner L, Maris JM, Hawkins R, Courtier J, Lai H, Goodarzian F, Shimada H, Czarnecki S, Tsao-Wei D, Matthay KK, Mosse YP (2016) Phase I study of the aurora a kinase inhibitor alisertib in combination with irinotecan and Temozolomide for patients with relapsed or refractory neuroblastoma: a NANT (new approaches to neuroblastoma therapy) trial. J Clin Oncol 34(12):1368–1375. https://doi.org/10.1200/JCO.2015.65.4889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kelly KR, Ecsedy J, Medina E, Mahalingam D, Padmanabhan S, Nawrocki ST, Giles FJ, Carew JS (2011) The novel aurora a kinase inhibitor MLN8237 is active in resistant chronic myeloid leukaemia and significantly increases the efficacy of nilotinib. J Cell Mol Med 15(10):2057–2070. https://doi.org/10.1111/j.1582-4934.2010.01218.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Manfredi MG, Ecsedy JA, Meetze KA, Balani SK, Burenkova O, Chen W, Galvin KM, Hoar KM, Huck JJ, LeRoy PJ, Ray ET, Sells TB, Stringer B, Stroud SG, Vos TJ, Weatherhead GS, Wysong DR, Zhang M, Bolen JB, Claiborne CF (2007) Antitumor activity of MLN8054, an orally active small-molecule inhibitor of aurora a kinase. Proc Natl Acad Sci U S A 104(10):4106–4111. https://doi.org/10.1073/pnas.0608798104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pitts TM, Bradshaw-Pierce EL, Bagby SM, Hyatt SL, Selby HM, Spreafico A, Tentler JJ, McPhillips K, Klauck PJ, Capasso A, Diamond JR, Davis SL, Tan AC, Arcaroli JJ, Purkey A, Messersmith WA, Ecsedy JA, Eckhardt SG (2016) Antitumor activity of the aurora a selective kinase inhibitor, alisertib, against preclinical models of colorectal cancer. Oncotarget 7(31):50290–50301. https://doi.org/10.18632/oncotarget.10366

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the patients who participated in this study and their families, the study investigators, and study staff. We would also like to thank the National Cancer Institute Clinical Trials Evaluation Program (NCI Trial #9824), the Vanderbilt-Ingram Cancer Center (P30 CA068485), and the National Institutes of Health (UM1 CA186689) for sponsoring this study.

Funding

We would like to thank the National Cancer Institute Clinical Trials Evaluation Program (NCI Trial #9842), the Vanderbilt-Ingram Cancer Center (P30 CA068485), and the National Institutes of Health (UM1 CA186689) for sponsoring this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura W. Goff.

Ethics declarations

Conflicts of interest

LWG has served as a consultant for Celgene and has institutional research funding from Astellas Pharma, Pfizer, Onxy, SunPharma, Lilly, and Bristol-Myers Squibb. SS has participated in advisory boards for Genentech Roche and Merck. HH has served as a consultant for Bayer, Genentech, and Merck. RC has received research grants from Macrogenics, Novartis, Puma Biotechnology, Merck, Merrimack, and Genentech. JB has served as a consultant for Celgene, Genentech, Aduro, Boston Biomedical, Janssen, Cornerstone, Symphogen, and Bayer and has institutional research funding from Genentech, Abbvie, Taiho, Bayer, 5Prime, Phoenix, Incyte, and Vertex. For the remaining authors, none were declared.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained for all individual participants included in the study.

Additional information

The original version of this article was revised: The authors would like to note that the investigator affiliations have been corrected to reflect the actual affiliations of each author. The authors would also like to note an amendment to the first name of the second author.

Electronic supplementary material

ESM 1

(DOCX 109 kb)

ESM 2

(DOCX 1296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goff, L.W., Azad, N.S., Stein, S. et al. Phase I study combining the aurora kinase a inhibitor alisertib with mFOLFOX in gastrointestinal cancer. Invest New Drugs 37, 315–322 (2019). https://doi.org/10.1007/s10637-018-0663-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-018-0663-0

Keywords

Navigation