Skip to main content

Advertisement

Log in

Development of apratoxin S10 (Apra S10) as an anti-pancreatic cancer agent and its preliminary evaluation in an orthotopic patient-derived xenograft (PDX) model

  • SHORT REPORT
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Despite the significant progress in the field of cancer therapeutics, the incidence of pancreatic cancer (PC) has continuously increased. One possible mechanism for this increasing burden is impaired drug delivery and drug resistance resulting from a unique tumor microenvironment and genetic mutations. Apratoxins are potent anticancer agents and cotranslational translocation inhibitors with potential therapeutic applications to treat cancers with active secretory pathways. Here, we developed apratoxin S10 (Apra S10) as an anti-pancreatic cancer agent which potently inhibited the growth of both established and patient-derived primary pancreatic cancer cells. We validated its mechanism of action on pancreatic cancer cells by demonstrating the downregulation of multiple receptor tyrosine kinases and inhibition of growth factor and cytokine secretion. Apra S10 also inhibited a number of cytokines secreted by stromal cells, suggesting that Apra S10 not only inhibited pancreatic cancer cell secretion, but also reduced the level of factors secreted by other cell types active within the tumor microenvironment. As Apra S10 tissue distribution indicated its high enrichment in pancreas tissue, an orthotopic pancreatic patient-derived xenograft mouse model that closely mimics the human pancreatic tumor microenvironment was for the first time used in apratoxin studies. Apra S10 showed promising antitumor effect in this pancreatic cancer model and this effect was mediated through anti-proliferation properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics. CA Cancer J Clin 66:7–30

    Article  PubMed  Google Scholar 

  2. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74:2913–2921

    Article  CAS  PubMed  Google Scholar 

  3. Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, Adenis A, Raoul J-L, Gourgou-Bourgade S, de la Fouchardière C, Bennouna J, Bachet J-B, Khemissa-Akouz F, Péré-Vergé D, Delbaldo C, Assenat E, Chauffert B, Michel P, Montoto-Grillot C, Ducreux M (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364:1817–1825

    Article  CAS  PubMed  Google Scholar 

  4. Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, Au HJ, Murawa P, Walde D, Wolff RA, Campos D, Lim R, Ding K, Clark G, Voskoglou-Nomikos T, Ptasynski M, Parulekar W (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada clinical trials group. J Clin Oncol 25:1960–1966

    Article  CAS  PubMed  Google Scholar 

  5. Long J, Zhang Y, Yu X, Yang J, LeBrun DG, Chen C, Yao Q, Li M (2011) Overcoming drug resistance in pancreatic cancer. Expert Opin Ther Targets 15:817–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chiaravalli M, Reni M, O’Reilly EM (2017) Pancreatic ductal adenocarcinoma: state-of-the-art 2017 and new therapeutic strategies. Cancer Treat Rev 60:32–43

    Article  PubMed  Google Scholar 

  7. Yu M, Tannock IF (2012) Targeting tumor architecture to favor drug penetration: a new weapon to combat chemoresistance in pancreatic cancer? Cancer Cell 21:327–329

    Article  CAS  PubMed  Google Scholar 

  8. Whatcott C, Han H, Posner RG, Von Hoff DD (2013) Tumor-stromal interactions in pancreatic cancer. Crit Rev Oncog 18:135–151

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jin C, Yao L, Long J, Fu D, Yu X, Xu J, Yang F, Ni Q (2009) Effect of multiple-phase regional intra-arterial infusion chemotherapy on patients with resectable pancreatic head adenocarcinoma. Chin Med J 122:284–290

    CAS  PubMed  Google Scholar 

  10. Liu F, Tang Y, Sun J, Yuan Z, Li S, Sheng J, Ren H, Hao J (2012) Regional intra-arterial vs. systemic chemotherapy for advanced pancreatic cancer: a systematic review and meta-analysis of randomized controlled trials. PLoS One 7:e40847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Von Hoff DD, Ramanathan RK, Borad MJ, Laheru DA, Smith LS, Wood TE, Korn RL, Desai N, Trieu V, Iglesias JL, Zhang H, Soon-Shiong P, Shi T, Rajeshkumar NV, Maitra A, Hidalgo M (2011) Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J Clin Oncol 29:4548–4554

    Article  CAS  Google Scholar 

  12. Frese KK, Neesse A, Cook N, Bapiro TE, Lolkema MP, Jodrell DI, Tuveson DA (2012) Nab-paclitaxel potentiates gemcitabine activity by reducing cytidine deaminase levels in a mouse model of pancreatic cancer. Cancer Discov 2:260–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang F, Jin C, Jiang Y, Li J, Di Y, Ni Q, Fu D (2011) Liposome based delivery systems in pancreatic cancer treatment: from bench to bedside. Cancer Treat Rev 37:633–642

    Article  CAS  PubMed  Google Scholar 

  14. Padhye S, Banerjee S, Chavan D, Pandye S, Swamy KV, Ali S, Li J, Dou QP, Sarkar FH (2009) Fluorocurcumins as cyclooxygenase-2 inhibitor: molecular docking, pharmacokinetics and tissue distribution in mice. Pharm Res 26:2438–2445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, Cooper ZA, Chapman PB, Solit DB, Ribas A, Lo RS, Flaherty KT, Ogino S, Wargo JA, Golub TR (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487:500–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luesch H, Yoshida WY, Moore RE, Paul VJ, Corbett TH (2001) Total structure determination of apratoxin a, a potent novel cytotoxin from the marine cyanobacterium Lyngbya majuscula. J Am Chem Soc 123:5418–5423

    Article  CAS  PubMed  Google Scholar 

  17. Luesch H, Chanda SK, Raya RM, DeJesus PD, Orth AP, Walker JR, Izpisúa Belmonte JC, Schultz PG (2006) A functional genomics approach to the mode of action of apratoxin a. Nat Chem Biol 2:158–167

    Article  CAS  PubMed  Google Scholar 

  18. Chen QY, Liu Y, Luesch H (2011) Systematic chemical mutagenesis identifies a potent novel apratoxin A/E hybrid with improved in vivo antitumor activity. ACS Med Chem Lett 2:861–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen QY, Liu Y, Cai W, Luesch H (2014) Improved total synthesis and biological evaluation of potent apratoxin S4 based anticancer agents with differential stability and further enhanced activity. J Med Chem 57:3011–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cai W, Chen Q-Y, Dang LH, Luesch H (2017) Apratoxin S10, a dual inhibitor of angiogenesis and cancer cell growth to treat highly vascularized tumors. ACS Med Chem Lett 8:1007–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu Y, Law BK, Luesch H (2009) Apratoxin A reversibly inhibits the secretory pathway by preventing cotranslational translocation. Mol Pharmacol 76:91–104

    Article  CAS  PubMed  Google Scholar 

  22. Paatero AO, Kellosalo J, Dunyak BM, Almaliti J, Gestwicki JE, Gerwick WH, Taunton J, Paavilainen VO (2016) Apratoxin kills cells by direct blockade of the Sec61 protein translocation channel. Cell Chem Biol 23:561–566

    Article  CAS  PubMed  Google Scholar 

  23. Singh D, Upadhyay G, Srivastava RK, Shankar S (2015) Recent advances in pancreatic cancer: biology, treatment, and prevention. Biochim Biophys Acta - Rev Cancer 1856:13–27

    Article  CAS  Google Scholar 

  24. Chandra R, Liddle RA (2009) Neural and hormonal regulation of pancreatic secretion. Curr Opin Gastroenterol 25:441–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Go KL, Delitto D, Judge SM, Gerber MH, George TJ, Behrns KE, Hughes SJ, Judge AR, Trevino JG (2017) Orthotopic patient-derived pancreatic Cancer xenografts engraft into the pancreatic parenchyma, metastasize, and induce muscle wasting to recapitulate the human disease. Pancreas 46:813–819

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pham K, Delitto D, Knowlton AE, Hartlage ER, Madhavan R, Gonzalo DH, Thomas RM, Behrns KE, George TJ, Hughes SJ, Wallet SM, Liu C, Trevino JG (2016) Isolation of pancreatic cancer cells from a patient-derived xenograft model allows for practical expansion and preserved heterogeneity in culture. Am J Pathol 186:1537–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Han S, Delitto D, Zhang D, Sorenson HL, Sarosi GA, Thomas RM, Behrns KE, Wallet SM, Trevino JG, Hughes SJ (2015) Primary outgrowth cultures are a reliable source of human pancreatic stellate cells. Lab Investig 95:1331–1340

    Article  CAS  PubMed  Google Scholar 

  28. Delitto D, Pham K, Vlada AC, Sarosi GA, Thomas RM, Behrns KE, Liu C, Hughes SJ, Wallet SM, Trevino JG (2015) Patient-derived xenograft models for pancreatic adenocarcinoma demonstrate retention of tumor morphology through incorporation of murine stromal elements. Am J Pathol 185:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rückert F, Aust D, Böhme I, Werner K, Brandt A, Diamandis EP, Krautz C, Hering S, Saeger HD, Grützmann R, Pilarsky C (2012) Five primary human pancreatic adenocarcinoma cell lines established by the outgrowth method. J Surg Res 172:29–39

    Article  CAS  PubMed  Google Scholar 

  30. Lieber M, Mazzetta J, Nelson-Rees W, Kaplan M, Todaro G (1975) Establishment of a continuous tumor-cell line (PANC-1) from a human carcinoma of the exocrine pancreas. Int J Cancer 15:741–747

    Article  CAS  PubMed  Google Scholar 

  31. Huang K-C, Chen Z, Jiang Y, Akare S, Kolber-Simonds D, Condon K, Agoulnik S, Tendyke K, Shen Y, Wu K-M, Mathieu S, Choi H-W, Zhu X, Shimizu H, Kotake Y, Gerwick WH, Uenaka T, Woodall-Jappe M, Nomoto K (2016) Apratoxin A shows novel pancreas-targeting activity through the binding of Sec61. Mol Cancer Ther 15:1208–1216

    Article  CAS  PubMed  Google Scholar 

  32. Tidgewell K, Engene N, Byrum T, Media J, Doi T, Valeriote FA, Gerwick WH (2010) Evolved diversification of a modular natural product pathway: Apratoxins F and G, two cytotoxic cyclic depsipeptides from a Palmyra collection of Lyngbya bouillonii. ChemBioChem 11:1458–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luesch H, Yoshida WY, Moore RE, Paul VJ (2002) New apratoxins of marine cyanobacterial origin from Guam and Palau. Bioorganic Med Chem 10:1973–1978

    Article  CAS  Google Scholar 

  34. Gutiérrez M, Suyama TL, Engene N, Wingerd JS, Matainaho T, Gerwick WH (2008) Apratoxin D, a potent cytotoxic cyclodepsipeptide from Papua New Guinea collections of the marine cyanobacteria Lyngbya majuscula and Lyngbya sordida. J Nat Prod 71:1099–1103

    Article  CAS  PubMed  Google Scholar 

  35. Matthew S, Schupp PJ, Luesch H (2008) Apratoxin E, a cytotoxic peptolide from a guamanian collection of the marine cyanobacterium Lyngbya bouillonii. J Nat Prod 71:1113–1116

    Article  CAS  PubMed  Google Scholar 

  36. Thornburg CC, Cowley ES, Sikorska J, Shaala LA, Ishmael JE, Youssef DTA, McPhail KL (2013) Apratoxin H and Apratoxin A sulfoxide from the red sea cyanobacterium Moorea producens. J Nat Prod 76:1781–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

W.C., experimental design, tissue distribution and PK study in mice, LC-MS/MS analysis, efficacy study in mice and manuscript writing; R.R. experimental design for in vitro assays (viability, RTKs, cytokine profiling) and edited manuscript; M.H.G., in vivo study and edited manuscript; J.G.T., supervised in vivo studies. Q.Y.C., scale-up total synthesis. Y.Y., PK parameter analysis and simulation study; H.D., supervised PK parameter analysis and simulation study. H.L., designed and supervised the study and edited the manuscript.

Funding

Research was supported in part by the National Institutes of Health, NCI grant R01CA172310, Ocala Royal Dames for Cancer Research, Inc., NCI Research Specialist Award R50CA211487 (R.R) and the Debbie and Sylvia DeSantis Chair professorship (H.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Luesch.

Ethics declarations

Conflict of interest

The authors declare the following competing financial interest(s): H. Luesch is co-founder of Oceanyx Pharmaceuticals, Inc., which has licensed patents and patent applications related to the subject matter.

Ethical approval

All applicable international, national, and /or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, W., Ratnayake, R., Gerber, M.H. et al. Development of apratoxin S10 (Apra S10) as an anti-pancreatic cancer agent and its preliminary evaluation in an orthotopic patient-derived xenograft (PDX) model. Invest New Drugs 37, 364–374 (2019). https://doi.org/10.1007/s10637-018-0647-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-018-0647-0

Keywords

Navigation