Chemosensitivity of various peritoneal cancer cell lines to HIPEC and PIPAC: comparison of an experimental duplex drug to standard drug regimens in vitro

Summary

We performed an in-vitro study testing the chemosensitivity of peritoneal cancer cell lines (SW620, HCT116, MKN45, 23,132/87, OAW42) to various cytostatic drug regimens. A duplex drug, characterized by reversible linking of the antimetabolites 2′-deoxy-5-fluorouridine (5-FdU) and 3’-C-ethynylcytidine (ECyd), was compared to oxaliplatin or to cisplatin plus doxorubicin. The experiments were designed to reflect the conditions of intraperitoneal chemotherapy. CASY® (Cell Analysis System) technology was used to compare the impact of incubation temperature/duration and drug concentration on the viability of the cancer cell lines versus normal human dermal fibroblasts. Two incubation scenarios were explored: (i) hyperthermic intraperitoneal chemotherapy (HIPEC) with 1 h of incubation at 42 °C, and (ii) pressurized intraperitoneal aerosol chemotherapy (PIPAC) with several successive incubations at 37 °C. Under HIPEC conditions, oxaliplatin induced a potent temperature-dependent growth inhibition of colon cancer cells not seen with the duplex drug. Under PIPAC conditions, the duplex drug achieved the same growth inhibition at a fraction of the dose level required with oxaliplatin. Gastric and ovarian cancer cells were more sensitive to cisplatin plus doxorubicin than to the duplex drug under PIPAC conditions. The duplex drug suggests itself, notably in cases of platinum resistance, as an alternative or addition to intraperitoneal chemotherapies when platinum-based PIPAC technology is used. Using it with HIPEC technology is not recommended. Higher doses of the duplex drug will enhance growth inhibition, albeit at the cost of a severely reduced difference in chemosensitivity between tumor and normal cells. Our findings provide orientation for PIPAC-based personalized intraperitoneal chemotherapy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Lambert LA (2015) Looking up: recent advances in understanding and treating peritoneal carcinomatosis. CA Cancer J Clin 65(4):284–298. https://doi.org/10.3322/caac.21277

    Article  PubMed  Google Scholar 

  2. 2.

    Franko J, Shi Q, Meyers JP, Maughan TS, Adams RA, Seymour MT, Saltz L, Punt CJA, Koopman M, Tournigand C, Tebbutt NC, Diaz-Rubio E, Souglakos J, Falcone A, Chibaudel B, Heinemann V, Moen J, De Gramont A, Sargent DJ, Grothey A, Analysis, research in cancers of the digestive system G (2016) Prognosis of patients with peritoneal metastatic colorectal cancer given systemic therapy: an analysis of individual patient data from prospective randomised trials from the Analysis and Research in Cancers of the Digestive System (ARCAD) database. Lancet Oncol 17(12):1709–1719. https://doi.org/10.1016/S1470-2045(16)30500-9

    Article  PubMed  Google Scholar 

  3. 3.

    Ceelen WP, Flessner MF (2010) Intraperitoneal therapy for peritoneal tumors: biophysics and clinical evidence. Nat Rev Clin Oncol 7(2):108–115. https://doi.org/10.1038/nrclinonc.2009.217

    Article  PubMed  Google Scholar 

  4. 4.

    Jiang Y, Fan H, Jiang Y, Song G, Wang F, Li X, Li G (2017) Efficacy and safety of FOLFIRI and biotherapy versus FOLFIRI alone for metastatic colorectal cancer patients: a meta-analysis. Medicine (Baltimore) 96(48):e8767. https://doi.org/10.1097/MD.0000000000008767

    Article  Google Scholar 

  5. 5.

    Ji WB, Hong KD, Kim JS, Joung SY, Um JW, Min BW (2018) Effect of a shortened duration of FOLFOX chemotherapy on the survival rate of patients with stage II and III colon cancer. Chemotherapy 63(1):8–12. https://doi.org/10.1159/000481566

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Marques RP, Duarte GS, Sterrantino C, Pais HL, Quintela A, Martins AP, Costa J (2017) Triplet (FOLFOXIRI) versus doublet (FOLFOX or FOLFIRI) backbone chemotherapy as first-line treatment of metastatic colorectal cancer: a systematic review and meta-analysis. Crit Rev Oncol Hematol 118:54–62. https://doi.org/10.1016/j.critrevonc.2017.08.006

    Article  PubMed  Google Scholar 

  7. 7.

    Kang BW, Kim TW, Lee JL, Ryu MH, Chang HM, Yu CS, Kim JC, Kim JH, Kang YK, Lee JS (2009) Bevacizumab plus FOLFIRI or FOLFOX as third-line or later treatment in patients with metastatic colorectal cancer after failure of 5-fluorouracil, irinotecan, and oxaliplatin: a retrospective analysis. Med Oncol 26(1):32–37. https://doi.org/10.1007/s12032-008-9077-8

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Bristow RE, Tomacruz RS, Armstrong DK, Trimble EL, Montz FJ (2002) Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis. J Clin Oncol 20(5):1248–1259. https://doi.org/10.1200/JCO.2002.20.5.1248

    Article  PubMed  Google Scholar 

  9. 9.

    Griffiths CT, Fuller AF (1978) Intensive surgical and chemotherapeutic management of advanced ovarian cancer. Surg Clin North Am 58(1):131–142

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Harter P, Muallem ZM, Buhrmann C, Lorenz D, Kaub C, Hils R, Kommoss S, Heitz F, Traut A, du Bois A (2011) Impact of a structured quality management program on surgical outcome in primary advanced ovarian cancer. Gynecol Oncol 121(3):615–619. https://doi.org/10.1016/j.ygyno.2011.02.014

    Article  PubMed  Google Scholar 

  11. 11.

    Stuart GC, Kitchener H, Bacon M, duBois A, Friedlander M, Ledermann J, Marth C, Thigpen T, Trimble E, Participants of 4th ovarian Cancer consensus C, Gynecologic Cancer I (2011) 2010 Gynecologic Cancer InterGroup (GCIG) consensus statement on clinical trials in ovarian cancer: report from the Fourth Ovarian Cancer Consensus Conference. Int J Gynecol Cancer 21(4):750–755. https://doi.org/10.1097/IGC.0b013e31821b2568

    Article  PubMed  Google Scholar 

  12. 12.

    Eveno C, Pocard M (2016) Randomized controlled trials evaluating cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) in prevention and therapy of peritoneal metastasis: a systematic review. Pleura and Peritoneum 1(4):169–182

    Article  PubMed  Google Scholar 

  13. 13.

    Akaboshi M, Tanaka Y, Kawai K, Akuta K, Masunaga S, Ono K (1994) Effect of hyperthermia on the number of platinum atoms binding to DNA of HeLa cells treated with 195mPt-radiolabelled cis-diaminedichloroplatinum(II). Int J Radiat Biol 66(2):215–220

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Alberts DS, Peng YM, Chen HS, Moon TE, Cetas TC, Hoeschele JD (1980) Therapeutic synergism of hyperthermia-cis-platinum in a mouse tumor model. J Natl Cancer Inst 65(2):455–461

    CAS  PubMed  Google Scholar 

  15. 15.

    Hahn GM (1979) Potential for therapy of drugs and hyperthermia. Cancer Res 39(6 Pt 2):2264–2268

    CAS  PubMed  Google Scholar 

  16. 16.

    Herman TS, Teicher BA, Cathcart KN, Kaufmann ME, Lee JB, Lee MH (1988) Effect of hyperthermia on cis-diamminedichloroplatinum(II) (rhodamine 123)2[tetrachloroplatinum(II)] in a human squamous cell carcinoma line and a cis-diamminedichloroplatinum(II)-resistant subline. Cancer Res 48(18):5101–5105

    CAS  PubMed  Google Scholar 

  17. 17.

    Los G, van Vugt MJ, Pinedo HM (1994) Response of peritoneal solid tumours after intraperitoneal chemohyperthermia treatment with cisplatin or carboplatin. Br J Cancer 69(2):235–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Meyn RE, Corry PM, Fletcher SE, Demetriades M (1980) Thermal enhancement of DNA damage in mammalian cells treated with cis-diamminedichloroplatinum(II). Cancer Res 40(4):1136–1139

    CAS  PubMed  Google Scholar 

  19. 19.

    van de Vaart PJ, van der Vange N, Zoetmulder FA, van Goethem AR, van Tellingen O, ten Bokkel Huinink WW, Beijnen JH, Bartelink H, Begg AC (1998) Intraperitoneal cisplatin with regional hyperthermia in advanced ovarian cancer: pharmacokinetics and cisplatin-DNA adduct formation in patients and ovarian cancer cell lines. Eur J Cancer 34(1):148–154

    Article  PubMed  Google Scholar 

  20. 20.

    Istomin YP, Zhavrid EA, Alexandrova EN, Sergeyeva OP, Petrovich SV (2008) Dose enhancement effect of anticaner drugs associated with increased temperature in vitro. Exp Oncol 30(1):56–59

    CAS  PubMed  Google Scholar 

  21. 21.

    Le Page S, Kwiatkowski F, Paulin C, Mohamed F, Pezet D, Chipponi J, Benhamed M, Gilly FN, Glehen O (2006) In vitro thermochemotherapy of colon cancer cell lines with irinotecan alone and combined with mitomycin C. Hepatogastroenterology 53(71):693–697

    PubMed  Google Scholar 

  22. 22.

    Sukovas A, Cesna V, Jasukaitiene A, Barauskas G, Nadisauskiene RJ, Dambrauskas Z, Paskauskas S, Gulbinas A (2017) Response of OVCAR-3 cells to cisplatin and hyperthermia: does hyperthermia really matter? Anticancer Res 37(9):5011–5018. https://doi.org/10.21873/anticanres.11915

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Girshally R, Demtroder C, Albayrak N, Zieren J, Tempfer C, Reymond MA (2016) Pressurized intraperitoneal aerosol chemotherapy (PIPAC) as a neoadjuvant therapy before cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. World J Surg Oncol 14(1):253. https://doi.org/10.1186/s12957-016-1008-0

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Dueckelmann AM, Fink D, Harter P, Heinzelmann V, Marth C, Mueller M, Reinthaller A, Tamussino K, Wimberger P, Sehouli J (2018) The use of PIPAC (pressurized intraperitoneal aerosol chemotherapy) in gynecological oncology: a statement by the German "Arbeitsgemeinschaft Gynaekologische Onkologie Studiengruppe Ovarialkarzinom (AGO-OVAR)", the Swiss and Austrian AGO, and the north-eastern German Society of Gynaecologic Oncology. Arch Gynecol Obstet 297(4):837–846. https://doi.org/10.1007/s00404-018-4673-0

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Schott H, Schott S, Schwendener RA (2009) Synthesis and in vitro activities of new anticancer duplex drugs linking 2′-deoxy-5-fluorouridine (5-FdU) with 3'-C-ethynylcytidine (ECyd) via a phosphodiester bonding. Bioorg Med Chem 17(19):6824–6831. https://doi.org/10.1016/j.bmc.2009.08.033

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Weinreich J, Schott S, Königsrainer I, Zieker D, Königsrainer A, Schott H (2011) Cytostatic activity of the duplex drug linking 2′-deoxy-5-fluorouridine (5FdU) with 3'-C-ethynylcytidine (ECyd) against gastric adenocarcinoma cell lines. Investig New Drugs 29(6):1294–1302. https://doi.org/10.1007/s10637-010-9483-6

    Article  CAS  Google Scholar 

  27. 27.

    Schott S, Wimberger P, Klink B, Grutzmann K, Puppe J, Wauer US, Klotz DM, Schrock E, Kuhlmann JD (2017) The conjugated antimetabolite 5-FdU-ECyd and its cellular and molecular effects on platinum-sensitive vs. -resistant ovarian cancer cells in vitro. Oncotarget 8(44):76935–76948. https://doi.org/10.18632/oncotarget.20260

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Beaufort CM, Helmijr JC, Piskorz AM, Hoogstraat M, Ruigrok-Ritstier K, Besselink N, Murtaza M, van IWF, Heine AA, Smid M, Koudijs MJ, Brenton JD, Berns EM, Helleman J (2014) Ovarian cancer cell line panel (OCCP): clinical importance of in vitro morphological subtypes. PLoS One 9(9):e103988. https://doi.org/10.1371/journal.pone.0103988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Lincet H, Guével B, Pineau C, Allouche S, Lemoisson E, Poulain L, Gauduchon P (2012) Comparative 2D-DIGE proteomic analysis of ovarian carcinoma cells: toward a reorientation of biosynthesis pathways associated with acquired platinum resistance. J Proteome 75(4):1157–1169. https://doi.org/10.1016/j.jprot.2011.10.030

    Article  CAS  Google Scholar 

  30. 30.

    Dubois D, Dubois EF (1916) A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 17:863–871

    Article  CAS  Google Scholar 

  31. 31.

    Schmut O, Faulborn J, Trummer G (1999) Quantifying the damage to conjunctival and corneal cell cultures caused by UV light using CASY (cell analysis system). A method for reducing animal experiments. Ophthalmologe 96(6):375–381

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Winkelmeier P, Glauner B, Lindl T (1993) Quantification of cytotoxicity by cell volume and cell proliferation. ATLA 21:269–280

    Google Scholar 

  33. 33.

    de Bree E, Michelakis D, Stamatiou D, Romanos J, Zoras O (2017) Pharmacological principles of intraperitoneal and bidirectional chemotherapy. Pleura and Peritoneum 2(2):47–62

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jürgen Weinreich.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

All procedures were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weinreich, J., Struller, F., Sautkin, I. et al. Chemosensitivity of various peritoneal cancer cell lines to HIPEC and PIPAC: comparison of an experimental duplex drug to standard drug regimens in vitro. Invest New Drugs 37, 415–423 (2019). https://doi.org/10.1007/s10637-018-0641-6

Download citation

Keywords

  • Chemosensitivity
  • PIPAC
  • HIPEC
  • Peritoneal cancer cell lines
  • Platinum versus duplex drug