Skip to main content

Advertisement

Log in

Human acute myeloid leukemia cells express Neurokinin-1 receptor, which is involved in the antileukemic effect of Neurokinin-1 receptor antagonists

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The substance P/neurokinin-1 receptor system has been implicated in tumor cell proliferation. Neurokinin-1 receptor has been identified in different solid tumors but not frequently in hematopoietic malignant cells. We investigated the presence of the Neurokinin-1 receptor in acute myeloid leukemia cell lines (KG-1 and HL-60), demonstrating that acute myeloid leukemia cell lines overexpress the truncated Neurokinin-1 receptor isoform compared with lymphocytes from healthy donors. Using the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) method, we demonstrated that substance P induced cell proliferation in both acute myeloid leukemia cell lines. We also observed that four different Neurokinin-1 receptor antagonists (L-733,060, L-732,138, CP 96–345 and aprepitant) elicited inhibition of acute myeloid leukemia cell growth lines in a concentration-dependent manner, while growth inhibition was only marginal in lymphocytes; the specific antitumor action of Neurokinin-1 receptor antagonists occurs via the Neurokinin-1 receptor, and leukemia cell death is due to apoptosis. Finally, administration of high doses of daily intraperitoneal fosaprepitant to NOD scid gamma mice previously xenografted with the HL60 cell line increased the median survival from 4 days (control group) to 7 days (treated group) (p = 0.059). Taken together, these findings suggest that Neurokinin-1 receptor antagonists suppress leukemic cell growth and may be considered to be potential antitumor drugs for the treatment of human acute myeloid leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Deschler B, Lubbert M (2006) Acute myeloid leukemia: epidemiology and etiology. Cancer 107:2099–2107

    Article  PubMed  Google Scholar 

  2. Hennig IM, Laissue JA, Horisberger U, Reubi JC (1995) Substance-P receptors in human primary neoplasms: tumoral and vascular localization. Int J Cancer 61(6):786–792

    Article  CAS  PubMed  Google Scholar 

  3. Luo W, Sharif TR, Sharif M (1996) Substance P-induced mitogenesis in human astrocytoma cells correlates with activation of the mitogen-activated protein kinase signaling pathway. Cancer Res 56(21):4983–4991

    CAS  PubMed  Google Scholar 

  4. Palma C (2006) Tachykinins and their receptors in human malignancies. Curr Drug Targets 7(8):1043–1052

    Article  CAS  PubMed  Google Scholar 

  5. Patacchini R, Lecci A, Holzer P, Maggi CA (2004) Newly discovered tachykinins raise new questions about their peripheral roles and the tachykinin nomenclature. Trends Pharmacol Sci 25(1):1–3

    Article  CAS  PubMed  Google Scholar 

  6. Severini C, Improta G, Falconieri-Erspamer G, Salvadori S, Erspamer V (2002) The tachykinin peptide family. Pharmacol Rev 54(2):285–322

    Article  CAS  PubMed  Google Scholar 

  7. Beaujouan JC, Torrens Y, Saffroy M, Kemel ML, Glowinski J (2004) A 25 years adventure in the field of tachykinins. Peptides 25(3):339–357

    Article  CAS  PubMed  Google Scholar 

  8. Kavelaars A, Jeurissen F, Heijnen CJ (1994) Substance P receptors and signal transduction in leukocytes. ImmunoMethods 5(1):41–48

    Article  CAS  PubMed  Google Scholar 

  9. Akazawa T, Kwatra SG, Goldsmith LE, Richardson MD, Cox EA, Sampson JH, Kwatra MM (2009) A constitutively active form of neurokinin 1 receptor and neurokinin 1 receptor-mediated in glioblastomas. J Neurochem 109(4):1079–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Muñoz M, Coveñas R (2013) Involvement of substance P and the NK-1 receptor in cancer progression. Peptides 48:1–9

    Article  CAS  PubMed  Google Scholar 

  11. Nowicki M, Mískowiak B, Ostalska-Nowicka D (2003) Detection of substance P and its mRNA in human blast cells in childhood lymphoblastic leukaemia using immunocytochemistry and in situ hybridisation. Folia Histochem Cytobiol 41(1):33–36

    PubMed  Google Scholar 

  12. Klassert TE, Patel SA, Rameshwar P (2010) Tachykinins and neurokinin receptors in bone marrow functions: neural-hematopoietic link. J Receptor Ligand Channel Res 3:51–61

    CAS  Google Scholar 

  13. Goto T, Tanaka T (2002) Tachykinins and tachykinin receptors in bone. Microsc Res Tech 58(2):91–97

    Article  CAS  PubMed  Google Scholar 

  14. Rameshwar P, Gascón P (1996) Induction of negative hematopoietic regulators by neurokinin-a in bone marrow stroma. Blood 88(1):98–106

    CAS  PubMed  Google Scholar 

  15. Greco SJ, Corcoran KE, Cho KJ, Rameshwar P (2004) Tachykinins in the emerging immune system: relevance to bone marrow homeostasis and maintenance of hematopoietic stem cells. Front Biosci 9:1782–1793

    Article  CAS  PubMed  Google Scholar 

  16. Rameshwar P, Zhu G, Donnelly RJ, Qian J, Ge H, Goldstein KR, Denny TN, Gascón P (2001) The dynamics of bone marrow stromal cells in the proliferation of multipotent hematopoietic progenitors by substance P: an understanding of the effects of a neurotransmitter on the differentiating hematopoietic stem cell. J Neuroimmunol 121:22–31

    Article  CAS  PubMed  Google Scholar 

  17. Rameshwar P, Ganea D, Gascón P (1993) In vitro stimulatory effect of substance P on hematopoiesis. Blood 81(2):391–398

    CAS  PubMed  Google Scholar 

  18. Rameshwar P, Oh HS, Yook C, Gascon P, Chang VT (2003) Substance p-fibronectin-cytokine interactions in myeloproliferative disorders with bone marrow fibrosis. Acta Haematol 109(1):1–10

    Article  CAS  PubMed  Google Scholar 

  19. Nowicki M, Ostalska-Nowicka D, Kondraciuk B, Miskowiak B (2007) The significance of substance P in physiological and malignant haematopoiesis. J Clin Pathol 60(7):749–755

    Article  CAS  PubMed  Google Scholar 

  20. Rameshwar P, Joshi DD, Yadav P, Gascón P, Qian J, Chang VT, Anjaria A, Harrison JS, Xiaosong S (2001) Mimicry between neurokinin-1 and fibronectin may explain the transport and stability of increased substance P-immunoreactivity in patients with bone marrow fibrosis. Blood 97:3025–3031

    Article  CAS  PubMed  Google Scholar 

  21. Suzuki R, Furuno T, Okamoto K, Teshima R, Nakanishi M (2007) ATP plays a role in neurite stimulation with activated mast cells. J Neuroimmunol 192(1–2):49–56

    Article  CAS  PubMed  Google Scholar 

  22. Muñoz M, González-Ortega A, Coveñas R (2012) The NK-1 receptor is expressed in human leukemia and is involved in the antitumor action of aprepitant and other NK-1 receptor antagonists on acute lymphoblastic leukemia cell lines. Investig New Drugs 30(2):529–540

    Article  CAS  Google Scholar 

  23. Muñoz M, Rosso M (2010) The NK-1 receptor antagonist aprepitant as a broad spectrum antitumor drug. Investig New Drugs 28(2):187–193

    Article  CAS  Google Scholar 

  24. Garcia-Recio S, Fuster G, Fernandez-Nogueira P, Pastor-Arroyo EM, Park SY, Mayordomo C et al (2013) Substance P autocrine signaling contributes to persistent HER2 activation that drives malignant progression and drug resistance in breast cancer. Cancer Res 73(21):6424–6434

    Article  CAS  PubMed  Google Scholar 

  25. Gillespie E, Leeman SE, Watts LA, Coukos JA, O’Brien MJ, Cerda SR, Farraye FA, Stucchi AF, Becker JM (2011) Truncated neurokinin-1 receptor is increased in colonic epithelial cells from patients with colitis-associated cancer. Proc Natl Acad Sci U S A 108(42):17420–17425

    Article  PubMed  PubMed Central  Google Scholar 

  26. Muñoz M, Coveñas R, Esteban F, Redondo M (2015) The substance P/NK-1 receptor system: NK-1 receptor antagonists as anti-cancer drugs. J Biosci 40(2):441–463

    Article  CAS  PubMed  Google Scholar 

  27. Mravec B, Gidron Y, Kukanova B, Bizik J, Kiss A, Hulin I (2006) Neural-endocrine-immune complex in the central modulation of tumorigenesis: facts, assumptions, and hypotheses. J Neuroimmunol 180(1–2):104–116

    Article  CAS  PubMed  Google Scholar 

  28. Gidron Y, Perry H, Glennie M (2005) Does the vagus nerve inform the brain about preclinical tumours and modulate them? Lancet Oncol 6(4):245–248

    Article  PubMed  Google Scholar 

  29. Wang X, Douglas SD, Lai JP, Tuluc F, Tebas P, Ho WZ (2007) Neurokinin-1 receptor antagonist (aprepitant) inhibits drug-resistant HIV-1 infection of macrophages in vitro. J NeuroImmune Pharmacol 2(1):42–48

    Article  PubMed  Google Scholar 

  30. Berger M, Neth O, Ilmer M, Garnier A, Salinas-Martín MV, de Agustín Asencio JC, von Schweinitz D, Kappler R, Muñoz M (2014) Hepatoblastoma cells express truncated neurokinin-1 receptor and can be growth inhibited by aprepitant in vitro and in vivo. J Hepatol 60(5):985–994

    Article  CAS  PubMed  Google Scholar 

  31. Razani E, Bayati S, Safaroghli Azar A, Ghaffari SH (2017) Anti-cancer effect of aprepitant on Nb4 leukemic cells. J Babol Univ Med Sci 19(10):28–34

    Google Scholar 

  32. Fong TM, Anderson SA, Yu H, Huang RR, Strader CD (1992) Differential activation of intracellular effector by two isoforms of human neurokinin-1 receptor. Mol Pharmacol 41(1):24–30

    CAS  PubMed  Google Scholar 

  33. Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW (2014) Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 94(1):265–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Merck, Co I (2008) Emend (fosaprepitant dimeglumine) for injection White House, Station. USA, NJ

    Google Scholar 

  35. Palma C, Bigioni M, Irrissuto C, Nardelli F, Maggi CA, Manzini S (2000) Anti-tumour activity of tachykinin NK1 receptor antagonists on human glioma U373 MG xenograft. Br J Cancer 82(2):480–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bigioni M, Benzo A, Irrissuto C, Maggi CA, Goso C (2005) Role of NK-1 and NK-2 tachykinin receptor antagonism on the growth of human breast carcinoma cell line MDA-MB-231. Anti-Cancer Drugs 16(10):1083–1089

    Article  CAS  PubMed  Google Scholar 

  37. Harford-Wright E, Lewis KM, Vink R, Ghabriel MN (2014) Evaluating the role of substance P in the growth of brain tumors. Neuroscience 261:85–94

    Article  CAS  PubMed  Google Scholar 

  38. Muñoz M, Berger M, Rosso M, Gonzalez-Ortega A, Carranza A, Coveñas R (2014) Antitumor activity of neurokinin-1 receptor antagonists in MG-63 human osteosarcoma xenografts. Int J Oncol 44(1):137–146

    Article  CAS  PubMed  Google Scholar 

  39. Muñoz M, Coveñas R (2013) Safety of neurokinin-1 receptor antagonists. Expert Opin Drug Saf 12(5):673–685

    Article  CAS  PubMed  Google Scholar 

  40. Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J, Sramek JJ, Reines SA, Liu G, Snavely D, Wyatt-Knowles E, Hale JJ, Mills SG, MacCoss M, Swain CJ, Harrison T, Hill RG, Hefti F, Scolnick EM, Cascieri MA, Chicchi GG, Sadowski S, Williams AR, Hewson L, Smith D, Carlson EJ, Hargreaves RJ, Rupniak NM (1998) Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281(5383):1640–1645

    Article  CAS  PubMed  Google Scholar 

  41. Tebas P, Spitsin S, Barrett JS, Tuluc F, Elci O, Korelitz JJ, Wagner W, Winters A, Kim D, Catalano R, Evans DL, Douglas SD (2015) Reduction of soluble CD163, substance P, programmed death 1 and inflammatory markers: phase 1B trial of aprepitant in HIV-1-infected adults. AIDS 29(8):931–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Muñoz.

Ethics declarations

Conflict of interest

Authors: A Molinos-Quintana, P Trujillo-Hacha, JI Piruat, JA Bejarano-García, E García-Guerrero and JA Pérez-Simón declare that they have no conflict of interest.

M Muñoz declares that he has a conflict of interest: USPTO Application no. 20090012086 ‘Use of non-peptidic NK-1 receptor antagonists for the production of apoptosis in tumor cells’.

Ethical approval

All applicable international, national and institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving human material or animal samples were approved by the Ethical Committee for Clinical Research of the University Hospital Virgen del Rocío (Seville, Spain) and were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

All samples from volunteer healthy donors were obtained from the regional blood donation center of the University Hospital Virgen del Rocío, and informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molinos-Quintana, A., Trujillo-Hacha, P., Piruat, J.I. et al. Human acute myeloid leukemia cells express Neurokinin-1 receptor, which is involved in the antileukemic effect of Neurokinin-1 receptor antagonists. Invest New Drugs 37, 17–26 (2019). https://doi.org/10.1007/s10637-018-0607-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-018-0607-8

Keywords

Navigation