Skip to main content
Log in

ATP-binding cassette transporters limit the brain penetration of Wee1 inhibitors

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Introduction Wee1 is an important kinase involved in the G2 cell cycle checkpoint and frequently upregulated in intracranial neoplasms such as glioblastoma (GBM) and diffuse intrinsic pontine glioma (DIPG). Two small molecules are available that target Wee1, AZD1775 and PD0166285, and clinical trials with AZD1775 have already been started. Since GBM and DIPG are highly invasive brain tumors, they are at least to some extent protected by the blood-brain barrier (BBB) and its ATP-binding cassette (ABC) efflux transporters. Methods We have here conducted a comprehensive set of in vitro and in vivo experiments to determine to what extent two dominant efflux transporters in the BBB, P-gp (ABCB1) and BCRP (ABCG2), exhibit affinity towards AZD1775 and PD0166285 and restrict their brain penetration. Results Using these studies, we demonstrate that AZD1775 is efficiently transported by both P-gp and BCRP, whereas PD0166285 is only a substrate of P-gp. Nonetheless, the brain penetration of both compounds was severely restricted in vivo, as indicated by a 5-fold (PD0166285) and 25-fold (AZD1775) lower brain-plasma ratio in wild type mice compared to Abcb1a/b;Abcg2−/− mice. Conclusion The brain penetration of these Wee1 inhibitors is severely limited by ABC transporters, which may compromise their clinical efficacy against intracranial neoplasms such as DIPG and GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9(3):153–166. https://doi.org/10.1038/nrc2602

    Article  CAS  PubMed  Google Scholar 

  2. Medema RH, Macurek L (2012) Checkpoint control and cancer. Oncogene 31(21):2601–2613. https://doi.org/10.1038/onc.2011.451

    Article  CAS  PubMed  Google Scholar 

  3. de Gooijer MC, van den Top A, Bockaj I, Beijnen JH, Würdinger T, van Tellingen O (2017) The G2 checkpoint—a node-based molecular switch. FEBS Open Bio 7(4):439–455. https://doi.org/10.1002/2211-5463.12206

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dixon H, Norbury CJ (2002) Therapeutic exploitation of checkpoint defects in cancer cells lacking p53 function. Cell Cycle 1(6):362–368. https://doi.org/10.4161/cc.1.6.257

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Li J, Booher RN, Kraker A, Lawrence T, Leopold WR, Sun Y (2001) Radiosensitization of p53 mutant cells by PD0166285, a novel G2 checkpoint abrogator. Cancer Res 61(22):8211–8217

    CAS  PubMed  Google Scholar 

  6. Hirai H, Iwasawa Y, Okada M, Arai T, Nishibata T, Kobayashi M, Kimura T, Kaneko N, Ohtani J, Yamanaka K, Itadani H, Takahashi-Suzuki I, Fukasawa K, Oki H, Nambu T, Jiang J, Sakai T, Arakawa H, Sakamoto T, Sagara T, Yoshizumi T, Mizuarai S, Kotani H (2009) Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol Cancer Ther 8(11):2992–3000. https://doi.org/10.1158/1535-7163.mct-09-0463

    Article  CAS  PubMed  Google Scholar 

  7. Rajeshkumar NV, De Oliveira E, Ottenhof N, Watters J, Brooks D, Demuth T, Shumway SD, Mizuarai S, Hirai H, Maitra A, Hidalgo M (2011) MK-1775, a potent Wee1 inhibitor, synergizes with gemcitabine to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts. Clin Cancer Res 17(9):2799–2806. https://doi.org/10.1158/1078-0432.ccr-10-2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bridges KA, Hirai H, Buser CA, Brooks C, Liu H, Buchholz TA, Molkentine JM, Mason KA, Meyn RE (2011) MK-1775, a novel Wee1 kinase inhibitor, radiosensitizes p53-defective human tumor cells. Clin Cancer Res 17(17):5638–5648. https://doi.org/10.1158/1078-0432.ccr-11-0650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vriend LE, De Witt Hamer PC, Van Noorden CJ, Wurdinger T (2013) WEE1 inhibition and genomic instability in cancer. Biochim Biophys Acta 1836(2):227–235. https://doi.org/10.1016/j.bbcan.2013.05.002

    CAS  PubMed  Google Scholar 

  10. Cuneo KC, Morgan MA, Davis MA, Parcels LA, Parcels J, Karnak D, Ryan C, Liu N, Maybaum J, Lawrence TS (2016) Wee1 kinase inhibitor AZD1775 radiosensitizes hepatocellular carcinoma regardless of TP53 mutational status through induction of replication stress. Int J Radiat Oncol Biol Phys 95(2):782–790. https://doi.org/10.1016/j.ijrobp.2016.01.028

    Article  CAS  PubMed  Google Scholar 

  11. Puigvert JC, Sanjiv K, Helleday T (2016) Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies. FEBS J 283(2):232–245. https://doi.org/10.1111/febs.13574

    Article  CAS  PubMed  Google Scholar 

  12. Leijen S, van Geel RMJM, Sonke GS, de Jong D, Rosenberg EH, Marchetti S, Pluim D, van Werkhoven E, Rose S, Lee MA, Freshwater T, Beijnen JH, Schellens JHM (2016) Phase II study of WEE1 inhibitor AZD1775 plus carboplatin in patients with TP53-mutated ovarian cancer refractory or resistant to first-line therapy within 3 months. J Clin Oncol 34(36):4354–4361. https://doi.org/10.1200/jco.2016.67.5942

    Article  CAS  PubMed  Google Scholar 

  13. Mir SE, De Witt Hamer PC, Krawczyk PM, Balaj L, Claes A, Niers JM, Van Tilborg AA, Zwinderman AH, Geerts D, Kaspers GJ, Peter Vandertop W, Cloos J, Tannous BA, Wesseling P, Aten JA, Noske DP, Van Noorden CJ, Wurdinger T (2010) In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell 18(3):244–257. https://doi.org/10.1016/j.ccr.2010.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. De Witt Hamer PC, Mir SE, Noske D, Van Noorden CJ, Wurdinger T (2011) WEE1 kinase targeting combined with DNA-damaging cancer therapy catalyzes mitotic catastrophe. Clin Cancer Res 17(13):4200–4207. https://doi.org/10.1158/1078-0432.CCR-10-2537

    Article  PubMed  Google Scholar 

  15. Caretti V, Hiddingh L, Lagerweij T, Schellen P, Koken PW, Hulleman E, van Vuurden DG, Vandertop WP, Kaspers GJ, Noske DP, Wurdinger T (2013) WEE1 kinase inhibition enhances the radiation response of diffuse intrinsic pontine gliomas. Mol Cancer Ther 12(2):141–150. https://doi.org/10.1158/1535-7163.MCT-12-0735

    Article  CAS  PubMed  Google Scholar 

  16. van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE (2015) Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat 19:1–12. https://doi.org/10.1016/j.drup.2015.02.002

    Article  PubMed  Google Scholar 

  17. Durmus S, Hendrikx JJMA, Schinkel AH (2015) Apical ABC transporters and cancer chemotherapeutic drug disposition. Adv Cancer Res 125:1–41. https://doi.org/10.1016/bs.acr.2014.10.001

    Article  PubMed  Google Scholar 

  18. de Gooijer MC, Zhang P, Thota N, Mayayo-Peralta I, Buil LC, Beijnen JH, van Tellingen O (2015) P-glycoprotein and breast cancer resistance protein restrict the brain penetration of the CDK4/6 inhibitor palbociclib. Investig New Drugs 33(5):1012–1019. https://doi.org/10.1007/s10637-015-0266-y

    Article  Google Scholar 

  19. Oberoi RK, Mittapalli RK, Elmquist WF (2013) Pharmacokinetic assessment of efflux transport in sunitinib distribution to the brain. J Pharmacol Exp Ther 347(3):755–764. https://doi.org/10.1124/jpet.113.208959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin F, de Gooijer MC, Roig EM, Buil LC, Christner SM, Beumer JH, Wurdinger T, Beijnen JH, van Tellingen O (2014) ABCB1, ABCG2, and PTEN determine the response of glioblastoma to temozolomide and ABT-888 therapy. Clin Cancer Res 20(10):2703–2713. https://doi.org/10.1158/1078-0432.CCR-14-0084

    Article  CAS  PubMed  Google Scholar 

  21. Parrish KE, Pokorny J, Mittapalli RK, Bakken K, Sarkaria JN, Elmquist WF (2015) Efflux transporters at the blood-brain barrier limit delivery and efficacy of cyclin-dependent kinase 4/6 inhibitor palbociclib (PD-0332991) in an orthotopic brain tumor model. J Pharmacol Exp Ther 355(2):264–271. https://doi.org/10.1124/jpet.115.228213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin F, de Gooijer MC, Hanekamp D, Chandrasekaran G, Buil LCM, Thota N, Sparidans RW, Beijnen JH, Würdinger T, van Tellingen O (2017) PI3K–mTOR pathway inhibition exhibits efficacy against high-grade glioma in clinically relevant mouse models. Clin Cancer Res 23(5):1286–1298. https://doi.org/10.1158/1078-0432.ccr-16-1276

    Article  CAS  PubMed  Google Scholar 

  23. Becker CM, Oberoi RK, McFarren SJ, Muldoon DM, Pafundi DH, Pokorny JL, Brinkmann DH, Ohlfest JR, Sarkaria JN, Largaespada DA, Elmquist WF (2015) Decreased affinity for efflux transporters increases brain penetrance and molecular targeting of a PI3K/mTOR inhibitor in a mouse model of glioblastoma. Neuro-Oncology 17(9):1210–1219. https://doi.org/10.1093/neuonc/nov081

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Schinkel AH, Wagenaar E, van Deemter L, Mol CA, Borst P (1995) Absence of the mdr1a P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin. A J Clin Invest 96(4):1698–1705. https://doi.org/10.1172/JCI118214

    Article  CAS  PubMed  Google Scholar 

  25. Jonker JW, Smit JW, Brinkhuis RF, Maliepaard M, Beijnen JH, Schellens JHM, Schinkel AH (2000) Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 92(20):1651–1656. https://doi.org/10.1093/jnci/92.20.1651

    Article  CAS  PubMed  Google Scholar 

  26. Pavek P, Merino G, Wagenaar E, Bolscher E, Novotna M, Jonker JW, Schinkel AH (2005) Human breast cancer resistance protein: interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine, and transport of cimetidine. J Pharmacol Exp Ther 312(1):144–152. https://doi.org/10.1124/jpet.104.073916

    Article  CAS  PubMed  Google Scholar 

  27. Pokorny JL, Calligaris D, Gupta SK, Iyekegbe DO, Mueller D, Bakken KK, Carlson BL, Schroeder MA, Evans DL, Lou Z, Decker PA, Eckel-Passow JE, Pucci V, Ma B, Shumway SD, Elmquist WF, Agar NYR, Sarkaria JN (2015) The efficacy of the Wee1 inhibitor MK-1775 combined with temozolomide is limited by heterogeneous distribution across the blood–brain barrier in glioblastoma. Clin Cancer Res 21(8):1916–1924. https://doi.org/10.1158/1078-0432.ccr-14-2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu J, Sanai N, Bao X, LoRusso P, Li J (2016) An aqueous normal-phase chromatography coupled with tandem mass spectrometry method for determining unbound brain-to-plasma concentration ratio of AZD1775, a Wee1 kinase inhibitor, in patients with glioblastoma. J Chromatogr B Anal Technol Biomed Life Sci 1028:25–32. https://doi.org/10.1016/j.jchromb.2016.05.050

    Article  CAS  Google Scholar 

  29. Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, Terasaki T (2011) Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem 117(2):333–345. https://doi.org/10.1111/j.1471-4159.2011.07208.x

    Article  CAS  PubMed  Google Scholar 

  30. Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4(3):226–235. https://doi.org/10.1016/j.stem.2009.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wright G, Golubeva V, Remsing Rix LL, Berndt N, Luo Y, Ward GA, Gray JE, Schonbrunn E, Lawrence HR, Monteiro ANA, Rix U (2017) Dual targeting of WEE1 and PLK1 by AZD1775 elicits single agent cellular anticancer activity. ACS Chem Biol 12(7):1883–1892. https://doi.org/10.1021/acschembio.7b00147

    Article  CAS  PubMed  Google Scholar 

  32. Zhu J-Y, Cuellar RA, Berndt N, Lee HE, Olesen SH, Martin MP, Jensen JT, Georg GI, Schönbrunn E (2017) Structural basis of wee kinases functionality and inactivation by diverse small molecule inhibitors. J Med Chem 60(18):7863–7875. https://doi.org/10.1021/acs.jmedchem.7b00996

    Article  CAS  PubMed  Google Scholar 

  33. Hyafil F, Vergely C, Du Vignaud P, Grand-Perret T (1993) In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res 53(19):4595–4602

    CAS  PubMed  Google Scholar 

  34. Dantzig AH, Shepard RL, Cao J, Law KL, Ehlhardt WJ, Baughman TM, Bumol TF, Starling JJ (1996) Reversal of P-glycoprotein-mediated multidrug resistance by a potent cyclopropyldibenzosuberane modulator, LY335979. Cancer Res 56(18):4171–4179

    CAS  PubMed  Google Scholar 

  35. Martin C, Berridge G, Mistry P, Higgins C, Charlton P, Callaghan R (1999) The molecular interaction of the high affinity reversal agent XR9576 with P-glycoprotein. Br J Pharmacol 128(2):403–411. https://doi.org/10.1038/sj.bjp.0702807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a research grant from the foundation Stophersentumoren.nl to Olaf van Tellingen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf van Tellingen.

Ethics declarations

Conflict of interest

Author Mark de Gooijer declares he has no conflicts of interest. Author Levi Buil declares he has no conflicts of interest. Author Jos H. Beijnen declares he has no conflicts of interest. Author Olaf van Tellingen declares he has no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Gooijer, M.C., Buil, L.C.M., Beijnen, J.H. et al. ATP-binding cassette transporters limit the brain penetration of Wee1 inhibitors. Invest New Drugs 36, 380–387 (2018). https://doi.org/10.1007/s10637-017-0539-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-017-0539-8

Keywords

Navigation