Skip to main content

Advertisement

Log in

Anti-invasive effects of CXCR4 and FAK inhibitors in non-small cell lung carcinomas with mutually inactivated p53 and PTEN tumor suppressors

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Non-small cell lung carcinoma (NSCLC) is the most common type of lung cancer. At the time of diagnosis, a large percentage of NSCLC patients have already developed metastasis, responsible for extremely high mortality rates. CXCR4 receptor and focal adhesion kinase (FAK) are known to regulate such invasive cancer behavior. Their expression is downregulated by p53 and PTEN tumor suppressors which are commonly co-inactivated in NSCLC patients and contribute to metastasis. Therefore, targeting CXCR4 or FAK seems to be a promising strategy in suppressing metastatic spread of p53/PTEN deficient NSCLCs. In this study, we first examined the invasive characteristics of NSCLC cells with suppressed p53 and PTEN activity using wound healing, gelatin degradation and invasion assays. Further, changes in the expression of CXCR4 and FAK were evaluated by RT-qPCR and Western Blot analysis. Finally, we tested the ability of CXCR4 and FAK inhibitors (WZ811 and PF-573228, respectively) to suppress the migratory and invasive potential of p53/PTEN deficient NSCLC cells, in vitro and in vivo using metastatic models of human NSCLC. Our results showed that cells with mutually inactive p53 and PTEN have significantly increased invasive potential associated with hyperactivation of CXCR4 and FAK signaling pathways. Treatments with WZ811 and PF-573228 inhibitors significantly reduced migratory and invasive capacity in vitro and showed a trend of improved survival in vivo. Accordingly, we demonstrated that p53/PTEN deficient NSCLCs have extremely invasive phenotype and provided a rationale for the use of CXCR4 or FAK inhibitors for the suppression of NSCLC dissemination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Torre LA, Siegel RL, Jemal A (2016) Lung cancer statistics. Adv Exp Med Biol 893:1–19. doi:10.1007/978-3-319-24223-1_1

    Article  PubMed  Google Scholar 

  2. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83(5):584–594. doi:10.4065/83.5.584

    Article  PubMed  PubMed Central  Google Scholar 

  3. Passlick B, Izbicki JR, Kubuschok B, Nathrath W, Thetter O, Pichlmeier U, Schweiberer L, Riethmuller G, Pantel K (1994) Immunohistochemical assessment of individual tumor cells in lymph nodes of patients with non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol 12(9):1827–1832. doi:10.1200/JCO.1994.12.9.1827

    Article  CAS  Google Scholar 

  4. Bauml J, Mick R, Zhang Y, Watt CD, Vachani A, Aggarwal C, Evans T, Langer C (2013) Determinants of survival in advanced non--small-cell lung cancer in the era of targeted therapies. Clin Lung Cancer 14(5):581–591. doi:10.1016/j.cllc.2013.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chan BA, Hughes BG (2015) Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Research 4(1):36–54. doi:10.3978/j.issn.2218-6751.2014.05.01

    CAS  Google Scholar 

  6. Ben-Baruch A (2009) Site-specific metastasis formation: chemokines as regulators of tumor cell adhesion, motility and invasion. Cell Adhes Migr 3(4):328–333

    Article  Google Scholar 

  7. Phillips RJ, Burdick MD, Lutz M, Belperio JA, Keane MP, Strieter RM (2003) The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am J Respir Crit Care Med 167(12):1676–1686. doi:10.1164/rccm.200301-071OC

    Article  PubMed  Google Scholar 

  8. Otsuka S, Bebb G (2008) The CXCR4/SDF-1 chemokine receptor axis: a new target therapeutic for non-small cell lung cancer. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer 3(12):1379–1383. doi:10.1097/JTO.0b013e31818dda9d

    Google Scholar 

  9. Fernandis AZ, Prasad A, Band H, Klosel R, Ganju RK (2004) Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast cancer cells. Oncogene 23(1):157–167. doi:10.1038/sj.onc.1206910

    Article  CAS  PubMed  Google Scholar 

  10. Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6(1):56–68. doi:10.1038/nrm1549

    Article  CAS  PubMed  Google Scholar 

  11. Conley-LaComb MK, Saliganan A, Kandagatla P, Chen YQ, Cher ML, Chinni SR (2013) PTEN loss mediated Akt activation promotes prostate tumor growth and metastasis via CXCL12/CXCR4 signaling. Mol Cancer 12(1):85. doi:10.1186/1476-4598-12-85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mehta SA, Christopherson KW, Bhat-Nakshatri P, Goulet RJ Jr, Broxmeyer HE, Kopelovich L, Nakshatri H (2007) Negative regulation of chemokine receptor CXCR4 by tumor suppressor p53 in breast cancer cells: implications of p53 mutation or isoform expression on breast cancer cell invasion. Oncogene 26(23):3329–3337. doi:10.1038/sj.onc.1210120

    Article  CAS  PubMed  Google Scholar 

  13. Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM (1998) Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 280(5369):1614–1617

    Article  CAS  PubMed  Google Scholar 

  14. Golubovskaya VM, Cance WG (2011) FAK and p53 protein interactions. Anti Cancer Agents Med Chem 11(7):617–619

    Article  CAS  Google Scholar 

  15. Cooper WA, Lam DC, O'Toole SA, Minna JD (2013) Molecular biology of lung cancer. J Thorac Dis 5(Suppl 5):S479–S490. doi:10.3978/j.issn.2072-1439.2013.08.03

    PubMed  PubMed Central  Google Scholar 

  16. Andjelkovic T, Bankovic J, Stojsic J, Milinkovic V, Podolski-Renic A, Ruzdijic S, Tanic N (2011) Coalterations of p53 and PTEN tumor suppressor genes in non-small cell lung carcinoma patients. Transl Res J Lab Clin Med 157(1):19–28. doi:10.1016/j.trsl.2010.09.004

    Article  CAS  Google Scholar 

  17. Gibbons DL, Byers LA, Kurie JM (2014) Smoking, p53 mutation, and lung cancer. Mol Cancer Res : MCR 12(1):3–13. doi:10.1158/1541-7786.MCR-13-0539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Perez-Ramirez C, Canadas-Garre M, Molina MA, Faus-Dader MJ, Calleja-Hernandez MA (2015) PTEN and PI3K/AKT in non-small-cell lung cancer. Pharmacogenomics 16(16):1843–1862. doi:10.2217/pgs.15.122

    Article  CAS  PubMed  Google Scholar 

  19. Ko BS, Chang TC, Chen CH, Liu CC, Kuo CC, Hsu C, Shen YC, Shen TL, Golubovskaya VM, Chang CC, Shyue SK, Liou JY (2010) Bortezomib suppresses focal adhesion kinase expression via interrupting nuclear factor-kappa B. Life Sci 86(5–6):199–206. doi:10.1016/j.lfs.2009.12.003

    Article  CAS  PubMed  Google Scholar 

  20. Dai X, Mao Z, Huang J, Xie S, Zhang H (2013) The CXCL12/CXCR4 autocrine loop increases the metastatic potential of non-small cell lung cancer in vitro. Oncol Lett 5(1):277–282. doi:10.3892/ol.2012.960

    CAS  PubMed  Google Scholar 

  21. NicAmhlaoibh R, Heenan M, Cleary I, Touhey S, O'Loughlin C, Daly C, Nunez G, Scanlon KJ, Clynes M (1999) Altered expression of mRNAs for apoptosis-modulating proteins in a low level multidrug resistant variant of a human lung carcinoma cell line that also expresses mdr1 mRNA. Int J Cancer 82(3):368–376

    Article  CAS  PubMed  Google Scholar 

  22. Shen YH, Zhang L, Gan Y, Wang X, Wang J, LeMaire SA, Coselli JS, Wang XL (2006) Up-regulation of PTEN (phosphatase and tensin homolog deleted on chromosome ten) mediates p38 MAPK stress signal-induced inhibition of insulin signaling. A cross-talk between stress signaling and insulin signaling in resistin-treated human endothelial cells. J Biol Chem 281(12):7727–7736. doi:10.1074/jbc.M511105200

    Article  CAS  PubMed  Google Scholar 

  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  24. Kraus-Berthier L, Jan M, Guilbaud N, Naze M, Pierre A, Atassi G (2000) Histology and sensitivity to anticancer drugs of two human non-small cell lung carcinomas implanted in the pleural cavity of nude mice. Clin Cancer Res Off J Am Assoc Cancer Res 6(1):297–304

    CAS  Google Scholar 

  25. Zuco V, Zunino F (2008) Cyclic pifithrin-alpha sensitizes wild type p53 tumor cells to antimicrotubule agent-induced apoptosis. Neoplasia 10(6):587–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Trotman LC, Pandolfi PP (2003) PTEN and p53: who will get the upper hand? Cancer Cell 3(2):97–99

    Article  CAS  PubMed  Google Scholar 

  27. Hu TH, Huang CC, Lin PR, Chang HW, Ger LP, Lin YW, Changchien CS, Lee CM, Tai MH (2003) Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer 97(8):1929–1940. doi:10.1002/cncr.11266

    Article  CAS  PubMed  Google Scholar 

  28. Kurose K, Gilley K, Matsumoto S, Watson PH, Zhou XP, Eng C (2002) Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat Genet 32(3):355–357. doi:10.1038/ng1013

    Article  CAS  PubMed  Google Scholar 

  29. Oki E, Tokunaga E, Nakamura T, Ueda N, Futatsugi M, Mashino K, Yamamoto M, Watanabe M, Ikebe M, Kakeji Y, Baba H, Maehara Y (2005) Genetic mutual relationship between PTEN and p53 in gastric cancer. Cancer Lett 227(1):33–38. doi:10.1016/j.canlet.2004.12.006

    Article  CAS  PubMed  Google Scholar 

  30. Danielsen SA, Lind GE, Bjornslett M, Meling GI, Rognum TO, Heim S, Lothe RA (2008) Novel mutations of the suppressor gene PTEN in colorectal carcinomas stratified by microsatellite instability- and TP53 mutation- status. Hum Mutat 29(11):E252–E262. doi:10.1002/humu.20860

    Article  PubMed  Google Scholar 

  31. Pi W, Guo X, Su L, Xu W (2012) BMP-2 up-regulates PTEN expression and induces apoptosis of pulmonary artery smooth muscle cells under hypoxia. PLoS One 7(5):e35283. doi:10.1371/journal.pone.0035283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Djuzenova CS, Fiedler V, Memmel S, Katzer A, Hartmann S, Krohne G, Zimmermann H, Scholz CJ, Polat B, Flentje M, Sukhorukov VL (2015) Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status. Exp Cell Res 330(2):346–357. doi:10.1016/j.yexcr.2014.08.013

    Article  CAS  PubMed  Google Scholar 

  33. Poon JS, Eves R, Mak AS (2010) Both lipid- and protein-phosphatase activities of PTEN contribute to the p53-PTEN anti-invasion pathway. Cell Cycle (Georgetown, Tex) 9(22):4450–4454. doi:10.4161/cc.9.22.13936

    Article  CAS  Google Scholar 

  34. Mukhopadhyay UK, Mooney P, Jia L, Eves R, Raptis L, Mak AS (2010) Doubles game: Src-Stat3 versus p53-PTEN in cellular migration and invasion. Mol Cell Biol 30(21):4980–4995. doi:10.1128/MCB.00004-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xia H, Nho RS, Kahm J, Kleidon J, Henke CA (2004) Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a beta 1 integrin viability signaling pathway. J Biol Chem 279(31):33024–33034. doi:10.1074/jbc.M313265200

    Article  CAS  PubMed  Google Scholar 

  36. Begley LA, Kasina S, Shah RB, Macoska JA (2015) Signaling mechanisms coupled to CXCL12/CXCR4-mediated cellular proliferation are PTEN-dependent. Am J Clin Exp Urol 3(2):91–99

    PubMed  PubMed Central  Google Scholar 

  37. Zhang H, Shao H, Golubovskaya VM, Chen H, Cance W, Adjei AA, Dy GK (2016) Efficacy of focal adhesion kinase inhibition in non-small cell lung cancer with oncogenically activated MAPK pathways. Br J Cancer 115(2):203–211. doi:10.1038/bjc.2016.190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martin P, Liu YN, Pierce R, Abou-Kheir W, Casey O, Seng V, Camacho D, Simpson RM, Kelly K (2011) Prostate epithelial Pten/TP53 loss leads to transformation of multipotential progenitors and epithelial to mesenchymal transition. Am J Pathol 179(1):422–435. doi:10.1016/j.ajpath.2011.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Puzio-Kuter AM, Castillo-Martin M, Kinkade CW, Wang X, Shen TH, Matos T, Shen MM, Cordon-Cardo C, Abate-Shen C (2009) Inactivation of p53 and Pten promotes invasive bladder cancer. Genes Dev 23(6):675–680. doi:10.1101/gad.1772909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guijarro MV, Dahiya S, Danielson LS, Segura MF, Vales-Lara FM, Menendez S, Popiolek D, Mittal K, Wei JJ, Zavadil J, Cordon-Cardo C, Pandolfi PP, Hernando E (2013) Dual Pten/Tp53 suppression promotes sarcoma progression by activating Notch signaling. Am J Pathol 182(6):2015–2027. doi:10.1016/j.ajpath.2013.02.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu JC, Voisin V, Wang S, Wang DY, Jones RA, Datti A, Uehling D, Al-awar R, Egan SE, Bader GD, Tsao M, Mak TW, Zacksenhaus E (2014) Combined deletion of Pten and p53 in mammary epithelium accelerates triple-negative breast cancer with dependency on eEF2K. EMBO Mol Med 6(12):1542–1560. doi:10.15252/emmm.201404402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gonzalez-Billalabeitia E, Seitzer N, Song SJ, Song MS, Patnaik A, Liu XS, Epping MT, Papa A, Hobbs RM, Chen M, Lunardi A, Ng C, Webster KA, Signoretti S, Loda M, Asara JM, Nardella C, Clohessy JG, Cantley LC, Pandolfi PP (2014) Vulnerabilities of PTEN-TP53-deficient prostate cancers to compound PARP-PI3K inhibition. Cancer Discov 4(8):896–904. doi:10.1158/2159-8290.CD-13-0230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tijana Stankovic.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Funding

This study was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant Nos III41031 and 173020), COST Action CM1106 “Chemical Approaches to Targeting Drug Resistance in Cancer Stem Cells” and COST Action CM1407 “Challenging organic syntheses inspired by nature - from natural products chemistry to drug discovery”.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

All animal procedures were in compliance with Directive (2010/63/EU) on the protection of animals used for experimental and other scientific purposes and was approved by the IACUC and the local Directorate-General for Regional Rural Economy and Veterinary (Licence No 5542/228006).

Electronic supplementary material

Online Resource 1

(DOCX 965 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dragoj, M., Bankovic, J., Sereti, E. et al. Anti-invasive effects of CXCR4 and FAK inhibitors in non-small cell lung carcinomas with mutually inactivated p53 and PTEN tumor suppressors. Invest New Drugs 35, 718–732 (2017). https://doi.org/10.1007/s10637-017-0494-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-017-0494-4

Keywords

Navigation