Skip to main content

Advertisement

Log in

Resistance to immunotherapy: clouds in a bright sky

  • REVIEW
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Two major challenges persist for an optimal management of immunotherapy: i) identifying those patients who will benefit from this type of therapy, and ii) determining the biological, cellular and molecular mechanisms that trigger disease progression while on therapy. There is a consensual view in favor of standardizing practices currently used to measure programmed death ligand 1 (PD-L1) expression that relates to innate resistance. The tumor mutation landscape has been widely explored as a potential predictor of treatment efficacy. In contrast, our knowledge is rather limited as concerns the mechanisms sustaining acquired resistance to checkpoint blockade immunotherapy in patients under treatment. Upregulation of T cell immunoglobulin mucin domain 3 (TIM-3) in CD8+ T-cells has been reported in patients developing acquired resistance to anti-PD-1 treatment. Resistance mechanisms are even more complex for combinatorial strategies linking immunotherapeutic agents and conventional therapies, an area that is expanding rapidly. However, with the arrival of advanced analytical methods such as mass cytometry, there is reason for optimism. These methods can identify cellular mechanisms governing response to therapy and resistance. The clinical use of inhibitors of tumor-microenvironment-modulated pathways, such as those targeting indoleamine 2, 3-dioxygenase (IDO), hold promise for resistance management.

Clouds in a bright sky – Joseph Mallord William Turner

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, Patt D, Chen TT, Berman DM, Wolchok JD (2015) Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 33(17):1889–1894. doi:10.1200/JCO.2014.56.2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mahoney KM, Rennert PD, Freeman GJ (2015) Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 14:561–584. doi:10.1038/nrd4591

    Article  CAS  PubMed  Google Scholar 

  3. Aguiar PN Jr, Santoro IL, Tadokoro H, de Lima LG, Filardi BA, Oliveira P, Mountzios G, de Mello RA (2016) The role of PD-L1 expression as a predictive biomarker in advanced non-small-cell lung cancer: a network meta-analysis. Immunotherapy 8(4):479–488. doi:10.2217/imt-2015-0002

    Article  CAS  PubMed  Google Scholar 

  4. Snyder A, Makarov V, Hellmann M, Rizvi N, Merghoub T, Wolchok JD, Chan TA (2015) Genetics and immunology: reinvigorated. Oncoimmunology 4:e1029705. doi:10.1080/2162402X.2015.1029705 eCollection 2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Manson G, Norwood J, Marabelle A, Kohrt H, Houot R (2016) Biomarkers associated with checkpoint inhibitors. Ann Oncol 27(7):1199–1206. doi:10.1093/annonc/mdw181

    Article  CAS  PubMed  Google Scholar 

  6. Sharma P, Allison JP (2015) Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161(2):205–214. doi:10.1016/j.cell.2015.03.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Galluzzi L, Senovilla L, Zitvogel L, Kroemer G (2012) The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 11(3):215–233. doi:10.1038/nrd3626

    Article  CAS  PubMed  Google Scholar 

  8. Kaneno R, Shurin GV, Tourkova IL, Shurin MR (2009) Chemomodulation of human dendritic cell function by antineoplastic agents in low noncytotoxic concentrations. J Transl Med 7:58. doi:10.1186/1479-5876-7-58

  9. Zitvogel L, Rusakiewicz S, Routy B, Ayyoub M, Kroemer G (2016) Immunological off-target effects of imatinib. Nat Rev Clin Oncol 13(7):431–446. doi:10.1038/nrclinonc.2016.41

    Article  CAS  PubMed  Google Scholar 

  10. Christiansson L, Söderlund S, Mangsbo S, Hjorth-Hansen H, Höglund M, Markevärn B, Richter J, Stenke L, Mustjoki S, Loskog A, Olsson-Strömberg U (2015) The tyrosine kinase inhibitors imatinib and dasatinib reduce myeloid suppressor cells and release effector lymphocyte responses. Mol Cancer Ther 14(5):1181–1191. doi:10.1158/1535-7163.MCT-14-0849

    Article  CAS  PubMed  Google Scholar 

  11. Ackerman A, Klein O, McDermott DF, Wang W, Ibrahim N, Lawrence DP, Gunturi A, Flaherty KT, Hodi FS, Kefford R, Menzies AM, Atkins MB, Long GV, Sullivan RJ (2014) Outcomes of patients with metastatic melanoma treated with immunotherapy prior to or after BRAF inhibitors. Cancer 120(11):1695–1701. doi:10.1002/cncr.28620

    Article  CAS  PubMed  Google Scholar 

  12. Ebert PJ, Cheung J, Yang Y, McNamara E, Hong R, Moskalenko M, Gould SE, Maecker H, Irving BA, Kim JM, Belvin M, Mellman I (2016) MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity 44(3):609–621. doi:10.1016/j.immuni.2016.01.024

    Article  CAS  PubMed  Google Scholar 

  13. Atkins MB, Larkin J (2016) Immunotherapy combined or sequenced with targeted therapy in the treatment of solid tumors: current perspectives. J Natl Cancer Inst 108(6):djv414. doi:10.1093/jnci/djv414

    Article  CAS  PubMed  Google Scholar 

  14. Hugo W, Shi H, Sun L, Piva M, Song C, Kong X, Moriceau G, Hong A, Dahlman KB, Johnson DB, Sosman JA, Ribas A, Lo RS (2015) Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell 162(6):1271–1285. doi:10.1016/j.cell.2015.07.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Restifo NP, Smyth MJ, Snyder A (2016) Acquired resistance to immunotherapy and future challenges. Nat Rev Cancer 16(2):121–126. doi:10.1038/nrc.2016.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Restifo NP, Marincola FM, Kawakami Y, Taubenberger J, Yannelli JR, Rosenberg SA (1996) Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst 88(2):100–108

    Article  CAS  PubMed  Google Scholar 

  17. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, Torrejon DY, Abril-Rodriguez G, Sandoval S, Barthly L, Saco J, Homet Moreno B, Mezzadra R, Chmielowski B, Ruchalski K, Shintaku IP, Sanchez PJ, Puig-Saus C, Cherry G, Seja E, Kong X, Pang J, Berent-Maoz B, Comin-Anduix B, Graeber TG, Tumeh PC, Schumacher TN, Lo RS, Ribas A (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375(9):819–829. doi:10.1056/NEJMoa1604958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG, Gandhi L, Redig AJ, Rodig SJ, Asahina H, Jones RE, Kulkarni MM, Kuraguchi M, Palakurthi S, Fecci PE, Johnson BE, Janne PA, Engelman JA, Gangadharan SP, Costa DB, Freeman GJ, Bueno R, Hodi FS, Dranoff G, Wong KK, Hammerman PS (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 7:10501. doi:10.1038/ncomms10501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim JM, Chen DS (2016) Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Ann Oncol 27(8):1492–1504. doi:10.1093/annonc/mdw217

    Article  CAS  PubMed  Google Scholar 

  20. Shaked Y (2016) Balancing efficacy of and host immune responses to cancer therapy: the yin and yang effects. Nat Rev Clin Onco 13(10):611–626. doi:10.1038/nrclinonc.2016.57

    Article  CAS  Google Scholar 

  21. Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S, Fuh G, Gerber HP, Ferrara N (2007) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol 25(8):911–920. doi:10.1038/nbt1323

    Article  CAS  PubMed  Google Scholar 

  22. Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L (2016) Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and Immunotherapy. Ann Oncol 27(8):1482–1492. doi:10.1093/annonc/mdw168

    Article  CAS  PubMed  Google Scholar 

  23. Hodi FS, Hwu WJ, Kefford R, Weber JS, Daud A, Hamid O, Patnaik A, Ribas A, Robert C, Gangadhar TC, Joshua AM, Hersey P, Dronca R, Joseph R, Hille D, Xue D, Li XN, Kang SP, Ebbinghaus S, Perrone A, Wolchok JD (2016) Evaluation of immune-related response criteria and RECIST v1.1 in patients with advanced melanoma treated with pembrolizumab. J Clin Oncol 34:1510–1517. doi:10.1200/JCO.2015.64.0391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wolchok JD, Hoos A, O'Day S, Weber JS, Hamid O, Lebbé C, Maio M, Binder M, Bohnsack O, Nichol G, Humphrey R, Hodi FS (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15(23):7412–7420. doi:10.1158/1078-0432.CCR-09-1624

    Article  CAS  PubMed  Google Scholar 

  25. Ledford H (2016) Cocktails for cancer with a measure of immunotherapy. Nature 532(7598):162–164. doi:10.1038/532162a

    Article  CAS  PubMed  Google Scholar 

  26. Callahan MK, Masters G, Pratilas CA, Ariyan C, Katz J, Kitano S, Russell V, Gordon RA, Vyas S, Yuan J, Gupta A, Wigginton JM, Rosen N, Merghoub T, Jure-Kunkel M, Wolchok JD (2014) Paradoxical activation of T cells via augmented ERK signaling mediated by a RAF inhibitor. Cancer Immunol Res 2(1):70–79. doi:10.1158/2326-6066.CIR-13-0160

    Article  CAS  PubMed  Google Scholar 

  27. Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74. doi:10.1126/science.aaa4971

    Article  CAS  PubMed  Google Scholar 

  28. Greenplate AR, Johnson DB, Ferrell PB Jr, Irish JM (2016) Systems immune monitoring in cancer therapy. Eur J Cancer 61:77–84. doi:10.1016/j.ejca.2016.03.085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fritsch EF, Rajasagi M, Ott PA, Brusic V, Hacohen N, Wu CJ (2014) HLA-binding properties of tumor neoepitopes in humans. Cancer Immunol Res 2(6):522–529. doi:10.1158/2326-6066.CIR-13-0227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hundal J, Carreno BM, Petti AA, Linette GP, Griffith OL, Mardis ER, Griffith M (2016) pVAC-Seq: a genome-guided in silico approach to identifying tumor neoantigens. Genome Med 8(1):11. doi:10.1186/s13073-016-0264-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, Hollmann TJ, Bruggeman C, Kannan K, Li Y, Elipenahli C, Liu C, Harbison CT, Wang L, Ribas A, Wolchok JD, Chan TA (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371:2189–2199. doi:10.1056/NEJMoa1406498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128. doi:10.1126/science.aaa1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van Rooij N, van Buuren MM, Philips D, Velds A, Toebes M, Heemskerk B, van Dijk LJ, Behjati S, Hilkmann H, El Atmioui D, Nieuwland M, Stratton MR, Kerkhoven RM, Kesmir C, Haanen JB, Kvistborg P, Schumacher TN (2013) Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol 31(32):e439–e442. doi:10.1200/JCO.2012.47.7521

    Article  PubMed  Google Scholar 

  34. Verdegaal EM, de Miranda NF, Visser M, Harryvan T, van Buuren MM, Andersen RS, Hadrup SR, van der Minne CE, Schotte R, Spits H, Haanen JB, Kapiteijn EH, Schumacher TN, van der Burg SH (2016) Neoantigen landscape dynamics during human melanoma-T cell interactions. Nature 536(7614):91–95

    Article  CAS  PubMed  Google Scholar 

  35. Lo Nigro C, Lattanzio L, Vivenza D, Monteverde M, Tonissi F, Strola G, Merlano M and Milano G (2016) Treatment outcome under cetuximab-based therapy and individual ADCC capability in head and neck cancer. AACR meeting New Orleans abst 1414

  36. Wang W, Erbe AK, Hank JA, Morris ZS, Sondel PM (2015) NK Cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front Immunol 6:368. doi:10.3389/fimmu.2015.00368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Milano G (2016) Don’t forget the host: a potential role for germinal polymorphisms as markers for checkpoint inhibitors. Ann Oncol. doi:10.1093/annonc/mdw554

  38. Adaniel C, Rendleman J, Polsky D, Berman RS, Shapiro RL, Shao Y, Heguy A, Osman I, Pavlick AC, Kirchhoff T (2014) Germline genetic determinants of immunotherapy response in metastatic melanoma. 50th annual meeting of American Society of Clinical Oncology; 2014; 30 May-3 June; Chicago, USA. J Clin Oncol 32:5s. suppl; abstr 3004

  39. Lee SY, Jung DK, Choi JE, Jin CC, Hong MJ, Do SK, Kang HG, Lee WK, Seok Y, Lee EB, Jeong JY, Shin KM, Yoo SS, Lee J, Cha SI, Kim CH, Park JY (2016) PD-L1 polymorphism can predict clinical outcomes of non-small cell lung cancer patients treated with first-line paclitaxel-cisplatin chemotherapy. Sci Rep 6:25952. doi:10.1038/srep25952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leone RD, Horton MR, Powell JD (2015) Something in the air: hyperoxic conditioning of the tumor microenvironment for enhanced immunotherapy. Cancer Cell 27(4):435–436. doi:10.1016/j.ccell.2015.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Holmgaard RB, Zamarin D, Li Y, Gasmi B, Munn DH, Allison JP, Merghoub T, Wolchok JD (2015) Tumor-expressed IDO recruits and activates MDSCs in a treg-dependent manner. Cell Rep 13(2):412–414. doi:10.1016/j.celrep.2015.08.077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jain RK (2014) Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26(5):605–622. doi:10.1016/j.ccell.2014.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tang H, Wang Y, Chlewicki LK, Zhang Y, Guo J, Liang W, Wang J, Wang X, Fu YX (2016) Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer Cell 29(3):285–296. doi:10.1016/j.ccell.2016.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard Milano.

Ethics declarations

Conflict of interest

The author received honoraria from Roche, Merck and MBS.

Funding

The work had no specific funding.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milano, G. Resistance to immunotherapy: clouds in a bright sky. Invest New Drugs 35, 649–654 (2017). https://doi.org/10.1007/s10637-017-0456-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-017-0456-x

Keywords

Navigation