Investigational New Drugs

, Volume 35, Issue 1, pp 11–25 | Cite as

Targeting the protein ubiquitination machinery in melanoma by the NEDD8-activating enzyme inhibitor pevonedistat (MLN4924)

  • Kit Man Wong
  • Lindsey N. Micel
  • Heather M. Selby
  • Aik Choon Tan
  • Todd M. Pitts
  • Stacey M. Bagby
  • Anna Spreafico
  • Peter J. Klauck
  • Stephen J. Blakemore
  • Peter F. Smith
  • Alice McDonald
  • Allison Berger
  • John J. Tentler
  • S. Gail Eckhardt
PRECLINICAL STUDIES

Abstract

Background The neddylation pathway conjugates NEDD8 to cullin-RING ligases and controls the proteasomal degradation of specific proteins involved in essential cell processes. Pevonedistat (MLN4924) is a selective small molecule targeting the NEDD8-activating enzyme (NAE) and inhibits an early step in neddylation, resulting in DNA re-replication, cell cycle arrest and death. We investigated the anti-tumor potential of pevonedistat in preclinical models of melanoma. Methods Melanoma cell lines and patient-derived tumor xenografts (PDTX) treated with pevonedistat were assessed for viability/apoptosis and tumor growth, respectively, to identify sensitive/resistant models. Gene expression microarray and gene set enrichment analyses were performed in cell lines to determine the expression profiles and pathways of sensitivity/resistance. Pharmacodynamic changes in treated-PDTX were also characterized. Results Pevonedistat effectively inhibited cell viability (IC50 < 0.3 μM) and induced apoptosis in a subset of melanoma cell lines. Sensitive and resistant cell lines exhibited distinct gene expression profiles; sensitive models were enriched for genes involved in DNA repair, replication and cell cycle regulation, while immune response and cell adhesion pathways were upregulated in resistant models. Pevonedistat also reduced tumor growth in melanoma cell line xenografts and PDTX with variable responses. An accumulation of pevonedistat-NEDD8 adduct and CDT1 was observed in sensitive tumors consistent with its mechanism of action. Conclusions This study provided preclinical evidence that NAE inhibition by pevonedistat has anti-tumor activity in melanoma and supports the clinical benefits observed in recent Phase 1 trials of this drug in melanoma patients. Further investigations are warranted to develop rational combinations and determine predictive biomarkers of pevonedistat.

Keywords

Neddylation Pevonedistat MLN4924 Protein degradation Melanoma 

Supplementary material

10637_2016_398_MOESM1_ESM.docx (3.9 mb)
ESM 1(DOCX 4003 kb)

References

  1. 1.
    Schwartz AL, Ciechanover A (2009) Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 49:73CrossRefPubMedGoogle Scholar
  2. 2.
    Nawrocki ST, Griffin P, Kelly KR, Carew JS (2012) MLN4924: a novel first-in-class inhibitor of NEDD8-activating enzyme for cancer therapy. Expert Opin Investig Drugs 21(10):1563CrossRefPubMedGoogle Scholar
  3. 3.
    Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, Harousseau JL, Ben-Yehuda D, Lonial S, Goldschmidt H, Reece D, San-Miguel JF, Bladé J, Boccadoro M, Cavenagh J, Dalton WS, Boral AL, Esseltine DL, Porter JB, Schenkein D, Anderson KC, for the Assessment of Proteasome Inhibition for Extending Remissions (APEX) Investigators (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352(24):2487CrossRefPubMedGoogle Scholar
  4. 4.
    Kane RC, Dagher R, Farrell A, Ko CW, Sridhara R, Justice R, Pazdur R (2007) Bortezomib for the treatment of mantle cell lymphoma. Clin Cancer Res 13(18 Pt 1):5291CrossRefPubMedGoogle Scholar
  5. 5.
    Nalepa G, Rolfe M, Harper JW (2006) Drug discovery in the ubiquitin-proteasome system. Nat Rev Drug Discov 5(7):596CrossRefPubMedGoogle Scholar
  6. 6.
    Tanaka T, Nakatani T, Kamitani T (2012) Inhibition of NEDD8-conjugation pathway by novel molecules: potential approaches to anticancer therapy. Mol Oncol 6(3):267CrossRefPubMedGoogle Scholar
  7. 7.
    Emanuele MJ, Elia AE, Xu Q, Thoma CR, Izhar L, Leng Y, Guo A, Chen YN, Rush J, Hsu PW et al (2011) Global identification of modular cullin-RING ligase substrates. Cell 147(2):459CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Guardavaccaro D, Pagano M (2004) Oncogenic aberrations of cullin-dependent ubiquitin ligases. Oncogene 23(11):2037CrossRefPubMedGoogle Scholar
  9. 9.
    Hu J, McCall CM, Ohta T, Xiong Y (2004) Targeted ubiquitination of CDT1 by the DDB1-CUL4A-ROC1 ligase in response to DNA damage. Nat Cell Biol 6(10):1003CrossRefPubMedGoogle Scholar
  10. 10.
    Chiba T, Tanaka K (2004) Cullin-based ubiquitin ligase and its control by NEDD8-conjugating system. Curr Protein Pept Sci 5(3):177CrossRefPubMedGoogle Scholar
  11. 11.
    Read MA, Brownell JE, Gladysheva TB, Hottelet M, Parent LA, Coggins MB, Pierce JW, Podust VN, Luo RS, Chau V et al (2000) Nedd8 modification of cul-1 activates SCF(beta(TrCP))-dependent ubiquitination of IkappaBalpha. Mol Cell Biol 20(7):2326CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Podust VN, Brownell JE, Gladysheva TB, Luo RS, Wang C, Coggins MB, Pierce JW, Lightcap ES, Chau V (2000) A Nedd8 conjugation pathway is essential for proteolytic targeting of p27Kip1 by ubiquitination. Proc Natl Acad Sci U S A 97(9):4579CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chen LC, Manjeshwar S, Lu Y, Moore D, Ljung BM, Kuo WL, Dairkee SH, Wernick M, Collins C, Smith HS (1998) The human homologue for the Caenorhabditis elegans cul-4 gene is amplified and overexpressed in primary breast cancers. Cancer Res 58(16):3677PubMedGoogle Scholar
  14. 14.
    Melchor L, Saucedo-Cuevas LP, Munoz-Repeto I, Rodriguez-Pinilla SM, Honrado E, Campoverde A, Palacios J, Nathanson KL, Garcia MJ, Benitez J (2009) Comprehensive characterization of the DNA amplification at 13q34 in human breast cancer reveals TFDP1 and CUL4A as likely candidate target genes. Breast Cancer Res 11(6):R86CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gao Q, Yu GY, Shi JY, Li LH, Zhang WJ, Wang ZC, Yang LX, Duan M, Zhao H, Wang XY et al (2014) Neddylation pathway is up-regulated in human intrahepatic cholangiocarcinoma and serves as a potential therapeutic target. Oncotarget 5(17):7820CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang X, Li L, Liang Y, Li C, Zhao H, Ye D, Sun M, Jeong LS, Feng Y, Fu S et al (2014) Targeting the neddylation pathway to suppress the growth of prostate cancer cells: therapeutic implication for the men's cancer. Biomed Res Int 2014:974309PubMedPubMedCentralGoogle Scholar
  17. 17.
    Li L, Wang M, Yu G, Chen P, Li H, Wei D, Zhu J, Xie L, Jia H, Shi J et al (2014) Overactivated neddylation pathway as a therapeutic target in lung cancer. J Natl Cancer Inst 106(6):ju083CrossRefGoogle Scholar
  18. 18.
    Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, Brownell JE, Burke KE, Cardin DP, Critchley S et al (2009) An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458(7239):732CrossRefPubMedGoogle Scholar
  19. 19.
    Bohnsack RN, Haas AL (2003) Conservation in the mechanism of Nedd8 activation by the human AppBp1-Uba3 heterodimer. J Biol Chem 278(29):26823CrossRefPubMedGoogle Scholar
  20. 20.
    Lin JJ, Milhollen MA, Smith PG, Narayanan U, Dutta A (2010) NEDD8-targeting drug MLN4924 elicits DNA rereplication by stabilizing Cdt1 in S phase, triggering checkpoint activation, apoptosis, and senescence in cancer cells. Cancer Res 70(24):10310CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Truong LN, Wu X (2011) Prevention of DNA re-replication in eukaryotic cells. J Mol Cell Biol 3(1):13CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Li JM, Jin J (2012) CRL ubiquitin ligases and DNA damage response. Front Oncol 2:29PubMedPubMedCentralGoogle Scholar
  23. 23.
    Hannah J, Zhou P (2009) Regulation of DNA damage response pathways by the cullin-RING ubiquitin ligases. DNA Repair 8(4):536CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Abbas T, Dutta A (2011) CRL4Cdt2: master coordinator of cell cycle progression and genome stability. Cell Cyle 10(2):241CrossRefGoogle Scholar
  25. 25.
    Blank JL, Liu XJ, Cosmopoulos K, Bouck DC, Garcia K, Bernard H, Tayber O, Hather G, Liu R, Narayanan U et al (2013) Novel DNA damage checkpoints mediating cell death induced by the NEDD8-activating enzyme inhibitor MLN4924. Cancer Res 73(1):225CrossRefPubMedGoogle Scholar
  26. 26.
    Luo Z, Pan Y, Jeong LS, Liu J, Jia L (2012) Inactivation of the Cullin (CUL)-RING E3 ligase by the NEDD8-activating enzyme inhibitor MLN4924 triggers protective autophagy in cancer cells. Autophagy 8(11):1677CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Swords RT, Kelly KR, Smith PG, Garnsey JJ, Mahalingam D, Medina E, Oberheu K, Padmanabhan S, O'Dwyer M, Nawrocki ST et al (2010) Inhibition of NEDD8-activating enzyme: a novel approach for the treatment of acute myeloid leukemia. Blood 115(18):3796CrossRefPubMedGoogle Scholar
  28. 28.
    McMillin DW, Jacobs HM, Delmore JE, Buon L, Hunter ZR, Monrose V, Yu J, Smith PG, Richardson PG, Anderson KC et al (2012) Molecular and cellular effects of NEDD8-activating enzyme inhibition in myeloma. Mol Cancer Ther 11(4):942CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Milhollen MA, Traore T, Adams-Duffy J, Thomas MP, Berger AJ, Dang L, Dick LR, Garnsey JJ, Koenig E, Langston SP et al (2010) MLN4924, a NEDD8-activating enzyme inhibitor, is active in diffuse large B-cell lymphoma models: rationale for treatment of NF-{kappa}B-dependent lymphoma. Blood 116(9):1515CrossRefPubMedGoogle Scholar
  30. 30.
    Pan WW, Zhou JJ, Yu C, Xu Y, Guo LJ, Zhang HY, Zhou D, Song FZ, Fan HY (2013) Ubiquitin E3 ligase CRL4(CDT2/DCAF2) as a potential chemotherapeutic target for ovarian surface epithelial cancer. J Biol Chem 288(41):29680CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Luo Z, Yu G, Lee HW, Li L, Wang L, Yang D, Pan Y, Ding C, Qian J, Wu L et al (2012) The Nedd8-activating enzyme inhibitor MLN4924 induces autophagy and apoptosis to suppress liver cancer cell growth. Cancer Res 72(13):3360CrossRefPubMedGoogle Scholar
  32. 32.
    Zhao L, Yue P, Lonial S, Khuri FR, Sun SY (2011) The NEDD8-activating enzyme inhibitor, MLN4924, cooperates with TRAIL to augment apoptosis through facilitating c-FLIP degradation in head and neck cancer cells. Mol Cancer Ther 10(12):2415CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mackintosh C, Garcia-Dominguez DJ, Ordonez JL, Ginel-Picardo A, Smith PG, Sacristan MP, de Alava E (2013) WEE1 accumulation and deregulation of S-phase proteins mediate MLN4924 potent inhibitory effect on Ewing sarcoma cells. Oncogene 32(11):1441CrossRefPubMedGoogle Scholar
  34. 34.
    Wei D, Li H, Yu J, Sebolt JT, Zhao L, Lawrence TS, Smith PG, Morgan MA, Sun Y (2012) Radiosensitization of human pancreatic cancer cells by MLN4924, an investigational NEDD8-activating enzyme inhibitor. Cancer Res 72(1):282CrossRefPubMedGoogle Scholar
  35. 35.
    Yang D, Tan M, Wang G, Sun Y (2012) The p21-dependent radiosensitization of human breast cancer cells by MLN4924, an investigational inhibitor of NEDD8 activating enzyme. PLoS One [Electronic Resource] 7(3):e34079CrossRefGoogle Scholar
  36. 36.
    Shah JJ, Jakubowiak AJ, O'Connor OA, Orlowski RZ, Harvey RD, Smith MR, Lebovic D, Diefenbach C, Kelly K, Hua Z et al (2015) Phase I study of the novel investigational NEDD8-activating enzyme inhibitor pevonedistat (MLN4924) in patients with relapsed/refractory multiple myeloma or lymphoma. Clin Cancer ResGoogle Scholar
  37. 37.
    Swords RT, Erba HP, DeAngelo DJ, Bixby DL, Altman JK, Maris M, Hua Z, Blakemore SJ, Faessel H, Sedarati F et al (2015) Pevonedistat (MLN4924), a first-in-class NEDD8-activating enzyme inhibitor, in patients with acute myeloid leukaemia and myelodysplastic syndromes: a phase 1 study. Br J Haematol 169(4):534–543CrossRefPubMedGoogle Scholar
  38. 38.
    Sarantopoulos J, Shapiro GI, Cohen RB, Clark JW, Kauh JS, Weiss GJ, Cleary JM, Mahalingam D, Pickard MD, Faessel HM et al (2016) Phase I study of the investigational NEDD8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924) in patients with advanced solid tumors. Clin Cancer Res 22(4):847–857CrossRefPubMedGoogle Scholar
  39. 39.
    Bhatia S, Pavlick AC, Boasberg P, Thompson JA, Mulligan G, Pickard MD, Faessel H, Dezube BJ, Hamid O (2016) A phase I study of the investigational NEDD8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924) in patients with metastatic melanoma. Investig New DrugsGoogle Scholar
  40. 40.
    Olszanski AJ (2014) Current and future roles of targeted therapy and immunotherapy in advanced melanoma. J Manag Care Pharm 20(4):346Google Scholar
  41. 41.
    Brownell JE, Sintchak MD, Gavin JM, Liao H, Bruzzese FJ, Bump NJ, Soucy TA, Milhollen MA, Yang X, Burkhardt AL et al (2010) Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. Mol Cell 37(1):102CrossRefPubMedGoogle Scholar
  42. 42.
    Milhollen MA, Narayanan U, Soucy TA, Veiby PO, Smith PG, Amidon B (2011) Inhibition of NEDD8-activating enzyme induces rereplication and apoptosis in human tumor cells consistent with deregulating CDT1 turnover. Cancer Res 71(8):3042CrossRefPubMedGoogle Scholar
  43. 43.
    Song H, Huai W, Yu Z, Wang W, Zhao J, Zhang L, Zhao W (2016) MLN4924, a first-in-class NEDD8-activating enzyme inhibitor, Attenuates IFN-β Production J Immunol.Google Scholar
  44. 44.
    Xu GW, Toth JI, da Silva SR, Paiva SL, Lukkarila JL, Hurren R, Maclean N, Sukhai MA, Bhattacharjee RN, Goard CA et al (2014) Mutations in UBA3 confer resistance to the NEDD8-activating enzyme inhibitor MLN4924 in human leukemic cells. PLoS One [Electronic Resource] 9(4):e93530CrossRefGoogle Scholar
  45. 45.
    Milhollen MA, Thomas MP, Narayanan U, Traore T, Riceberg J, Amidon BS, Bence NF, Bolen JB, Brownell J, Dick LR et al (2012) Treatment-emergent mutations in NAEbeta confer resistance to the NEDD8-activating enzyme inhibitor MLN4924. Cancer Cell 21(3):388CrossRefPubMedGoogle Scholar
  46. 46.
    Long GV, Menzies AM, Nagrial AM, Haydu LE, Hamilton AL, Mann GJ, Hughes TM, Thompson JF, Scolyer RA, Kefford RF (2011) Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol 29(10):1239CrossRefPubMedGoogle Scholar
  47. 47.
    Garcia K, Blank JL, Bouck DC, Liu XJ, Sappal DS, Hather G, Cosmopoulos K, Thomas MP, Kuranda M, Pickard MD et al (2014) Nedd8-activating enzyme inhibitor MLN4924 provides synergy with mitomycin C through interactions with ATR, BRCA1/BRCA2, and chromatin dynamics pathways. Mol Cancer Ther 13(6):1625CrossRefPubMedGoogle Scholar
  48. 48.
    Jazaeri AA, Shibata E, Park J, Bryant JL, Conaway MR, Modesitt SC, Smith PG, Milhollen MA, Berger AJ, Dutta A (2013) Overcoming platinum resistance in preclinical models of ovarian cancer using the neddylation inhibitor MLN4924. Mol Cancer Ther 12(10):1958CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Nawrocki ST, Kelly KR, Smith PG, Espitia CM, Possemato A, Beausoleil SA, Milhollen M, Blakemore S, Thomas M, Berger A et al (2013) Disrupting protein NEDDylation with MLN4924 is a novel strategy to target cisplatin resistance in ovarian cancer. Clin Cancer Res 19(13):3577CrossRefPubMedGoogle Scholar
  50. 50.
    Jia L, Li H, Sun Y (2011) Induction of p21-dependent senescence by an NAE inhibitor, MLN4924, as a mechanism of growth suppression. Neoplasia (New York) 13(6):561CrossRefGoogle Scholar
  51. 51.
    Genomics of Drug Sensitivity in Cancer, Wellcome Trust Sanger Institute (2016). http://www.cancerrxgene.org Accessed January 20, 2016
  52. 52.
    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kit Man Wong
    • 1
  • Lindsey N. Micel
    • 2
  • Heather M. Selby
    • 2
  • Aik Choon Tan
    • 2
    • 3
  • Todd M. Pitts
    • 2
    • 3
  • Stacey M. Bagby
    • 2
  • Anna Spreafico
    • 4
  • Peter J. Klauck
    • 2
  • Stephen J. Blakemore
    • 5
  • Peter F. Smith
    • 5
  • Alice McDonald
    • 5
  • Allison Berger
    • 5
  • John J. Tentler
    • 2
    • 3
  • S. Gail Eckhardt
    • 2
    • 3
  1. 1.Division of Medical Oncology, Department of MedicineUniversity of Washington School of MedicineSeattleUSA
  2. 2.Developmental Therapeutics Program, Division of Medical Oncology, Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraUSA
  3. 3.University of Colorado Cancer CenterAuroraUSA
  4. 4.Department of Medical Oncology, Princess Margaret Cancer CenterTorontoCanada
  5. 5.Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company LtdCambridgeUSA

Personalised recommendations