Investigational New Drugs

, Volume 34, Issue 5, pp 625–635 | Cite as

Phase II evaluation of LY2603618, a first-generation CHK1 inhibitor, in combination with pemetrexed in patients with advanced or metastatic non-small cell lung cancer

  • Giorgio ScagliottiEmail author
  • Jin Hyoung Kang
  • David Smith
  • Richard Rosenberg
  • Keunchil Park
  • Sang-We Kim
  • Wu-Chou Su
  • Thomas E. Boyd
  • Donald A. Richards
  • Silvia Novello
  • Scott M. Hynes
  • Scott P. Myrand
  • Ji Lin
  • Emily Nash Smyth
  • Sameera Wijayawardana
  • Aimee Bence Lin
  • Mary Pinder-Schenck


Introduction LY2603618 is a selective inhibitor of checkpoint kinase 1 (CHK1) protein kinase, a key regulator of the DNA damage checkpoint, and is predicted to enhance the effects of antimetabolites, such as pemetrexed. This phase II trial assessed the overall response rate, safety, and pharmacokinetics (PK) of LY2603618 and pemetrexed in patients with non-small cell lung cancer (NSCLC). Methods In this open-label, single-arm trial, patients with advanced or metastatic NSCLC progressing after a prior first-line treatment regimen (not containing pemetrexed) and Eastern Cooperative Oncology Group performance status ≤2 received pemetrexed (500 mg/m2, day 1) and LY2603618 (150 mg/m2, day 2) every 21 days until disease progression. Safety was assessed using Common Terminology Criteria for Adverse Events v3.0. Serial blood samples were collected for PK analysis after LY2603618 and pemetrexed administration. Expression of p53, as measured by immunohistochemistry and genetic variant analysis, was assessed as a predictive biomarker of response. Results Fifty-five patients were enrolled in the study. No patients experienced a complete response; a partial response was observed in 5 patients (9.1 %; 90 % CI, 3.7–18.2) and stable disease in 20 patients (36.4 %). The median progression-free survival was 2.3 months (range, 0–27.1). Safety and PK of LY2603618 in combination with pemetrexed were favorable. No association between p53 status and response was observed. Conclusions There was no significant clinical activity of LY2603618 and pemetrexed combination therapy in patients with advanced NSCLC. The results were comparable with historical pemetrexed single-agent data, with similar safety and PK profiles being observed.


CHK1 protein kinase inhibitor LY2603618 Non-small cell lung cancer p53 Pharmacokinetics 



The authors thank all patients, their caregivers, and all investigators for their participation in the study. The authors thank Ignacio Garcias-Ribas and Eric Westin formerly of Eli Lilly and Company, now of Takeda Oncology, for their contributions to the CHK1 clinical program; Rodney L. Decker of Eli Lilly and Company for his assistance with the pharmacokinetic analysis; Sunil Kadam of Eli Lilly and Company for designing the p53 analysis; Jill Kolodsick of Eli Lilly and Company and Chastity Bradley of ClinGenuity, LLC for writing assistance; Elizabeth Kumm of InVentiv Health Clinical, LLC for statistical assistance; and Ben Legendre of Transgenomic for assisting with the TP53 functionality analysis.

Compliance with ethical standards

Financial disclosure

Giorgio Scagliotti has received honoraria from Eli Lilly and Company, AstraZeneca, Pfizer, Roche, and Clovis Oncology. Jin Hyoung Kang is an Advisory board member and has received research support from Eli Lilly and Company. Scott M. Hynes, Ji Lin, Emily Nash Smyth, Sameera Wijayawardana, and Aimee Bence Lin are all employees of Eli Lilly and Company and own Eli Lilly and Company stock.

Conflicts of interest

All remaining authors have declared no conflicts of interest.

Sources of supports

Eli Lilly and Company.

Trial registration ID

A Study of Advanced or Metastatic Non-small Cell Lung Cancer; NCT00988858.

Supplementary material

10637_2016_368_MOESM1_ESM.docx (24 kb)
ESM 1 (DOCX 24 kb)


  1. 1.
    Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29CrossRefPubMedGoogle Scholar
  2. 2.
    Reck M, Heigener DF, Mok T, Soria JC, Rabe KF (2013) Management of non-small-cell lung cancer: recent developments. Lancet 382:709–719CrossRefPubMedGoogle Scholar
  3. 3.
    Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H, Elledge SJ (1997) Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277:1497–1501CrossRefPubMedGoogle Scholar
  4. 4.
    Calvo E, Chen VJ, Marshall M, Ohnmacht U, Hynes SM, Kumm E, Diaz HB, Barnard D, Merzoug FF, Huber L, Kays L, Iversen P, Calles A, Voss B, Lin AB, Dickgreber N, Wehler T, Sebastian M (2014) Preclinical analyses and phase I evaluation of LY2603618 administered in combination with pemetrexed and cisplatin in patients with advanced cancer. Investig New Drugs 32:955–968CrossRefGoogle Scholar
  5. 5.
    Weiss G, Donehower R, Iyengar T, Ramanathan RK, Lewandowski K, Westin E, Hurt K, Hynes SM, Anthony SP, McKane S (2013) Phase I dose-escalation study to examine the safety and tolerability of LY2603618, a checkpoint 1 kinase inhibitor, administered 1 day after pemetrexed 500 mg/m2 every 21 days in patients with cancer. Investig New Drugs 31:136–144CrossRefGoogle Scholar
  6. 6.
    Gottifredi V, Karni-Schmidt O, Shieh SS, Prives C (2001) p53 down-regulates CHK1 through p21 and the retinoblastoma protein. Mol Cell Biol 21:1066–1076CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    The Cancer Genome Atlas Research Network (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511:543–550CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Dai Y, Grant S (2010) New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clin Cancer Res 16:376–383CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    McNeely S, Beckmann R, Bence Lin AK (2014) CHEK again: revisiting the development of CHK1 inhibitors for cancer therapy. Pharmacol Ther 142:1–10CrossRefPubMedGoogle Scholar
  10. 10.
    Alimta [package insert]. Indianapolis, IN: Eli Lilly and Company; 2012.Google Scholar
  11. 11.
    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247CrossRefPubMedGoogle Scholar
  12. 12.
    Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET, Carbone PP (1982) Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol 5:649–655CrossRefPubMedGoogle Scholar
  13. 13.
    Hollen PJ, Gralla RJ, Kris MG (1995) Assessing quality of life in patients with lung cancer: a guide for clinicians. In: Gralla RJ, Moinpour CM (eds) Assessing Quality of Life in Patients with Lung Cancer: A Guide for Clinicians. NCM Publishers, New York, pp. 57–63Google Scholar
  14. 14.
    Wang P, Bowman L, Shen W, Winfree KB, Peterson P, John WJ (2012) The lung cancer symptom scale (LCSS) as a prognostic indicator of overall survival in malignant pleural mesothelioma (MPM) patients: Post hoc analysis of a phase III study. J Clin Oncol 30(suppl):7075 [abstract]Google Scholar
  15. 15.
    Obasaju C, Bowman L, Wang P, Shen W, Winfree KB, Smyth EN, Boye ME, John W, Brodowicz T, Belani CP (2013) Identifying the target NSCLC patient for maintenance therapy: an analysis from a placebo-controlled, phase III trial of maintenance pemetrexed (H3E-MC-JMEN). Ann Oncol 24:1534–1542CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hanna N, Shepherd FA, Fossella FV, Pereira JR, de Marinis F, von Pawel J, Gatzemeier U, Tsao TC, Pless M, Muller T, Lim HL, Desch C, Szondy K, Gervais R, Shaharyar, Manegold C, Paul S, Paoletti P, Einhorn L, Bunn PA Jr (2004) Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol 22:1589–1597Google Scholar
  17. 17.
    Scagliotti G, Hanna N, Fossella F, Sugarman K, Blatter J, Peterson P, Simms L, Shepherd FA (2009) The differential efficacy of pemetrexed according to NSCLC histology: a review of two phase III studies. Oncologist 14:253–263CrossRefPubMedGoogle Scholar
  18. 18.
    King C, Diaz H, Barnard D, Barda D, Clawson D, Blosser W, Cox K, Guo S, Marshall M (2014) Characterization and preclinical development of LY2603618: a selective and potent Chk1 inhibitor. Investig New Drugs 32:213–226CrossRefGoogle Scholar
  19. 19.
    Daud AI, Ashworth MT, Strosberg J, Goldman JW, Mendelson D, Springett G, Venook AP, Loechner S, Rosen LS, Shanahan F, Parry D, Shumway S, Grabowsky JA, Freshwater T, Sorge C, Kang SP, Isaacs R (2015) Munster PN (2015) Phase I dose-escalation trial of checkpoint kinase 1 inhibitor MK-8776 as monotherapy and in combination with gemcitabine in patients with advanced solid tumors. J Clin Oncol 33:1060–1066CrossRefPubMedGoogle Scholar
  20. 20.
    Infante JR, Hollebecque A, Postel-Vinay S, Bauer T, Blackwood B, Evangelista M, Mahrus S, Peale F, Lu X, Sahasranaman S, Zhu R, Chen Y, Ding X, Murray E, Schutzman J, Lauchle J, Soria J-C, LoRusso P (2015) Phase I study of GDC-0425, a checkpoint kinase 1 inhibitor, in combination with gemcitabine in patients with refractory solid tumors. Cancer Res 75(15 suppl):nr CT139 [abstract]CrossRefGoogle Scholar
  21. 21.
    Sausville E, LoRusso P, Carducci M, Carter J, Quinn MF, Malburg L, Azad N, Cosgrove D, Knight R, Barker P, Zabludoff S, Agbo F, Oakes P, Senderowicz A (2014) Phase I dose-escalation study of AZD7762, a checkpoint kinase inhibitor, in combination with gemcitabine in US patients with advanced solid tumors. Cancer Chemother Pharmacol 73:539–549CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Seto T, Esaki T, Hirai F, Arita S, Nosaki K, Makiyama A, Kometani T, Fujimoto C, Hamatake M, Takeoka H, Agbo F, Shi X (2013) Phase I, dose-escalation study of AZD7762 alone and in combination with gemcitabine in Japanese patients with advanced solid tumours. Cancer Chemother Pharmacol 72:619–627CrossRefPubMedGoogle Scholar
  23. 23.
    Ho A, Bendell J, Cleary J, Schwartz GK, Burris HA, Oakes P, Agbo F, Barker PN, Senderowicz AM, Shapiro G (2011) Phase I, open-label, dose-escalation study of AZD7762 in combination with irinotecan (irino) in patients (pts) with advanced solid tumors. J Clin Oncol 29(suppl):3033 [abstract]Google Scholar
  24. 24.
    Gasco A, Molina-Vila M, Bertran-Alamillo J, Mayo C, Costa C, Capitan AG, Massuti B, Camps C, Costa EC, Ramirez SV, Martinez-Bueno A, Beniloch S, Capdevila L, Cros S, Porta R, Cardenal F, Bosch J, Sanchez JJ, Taron M, Rosell R (2012) Association of p53 mutations with progression-free survival (PFS) and overall survival (OS) in EGFR-mutated non-small cell lung cancer (NSCLC) patients (p) treated with erlotinib. J Clin Oncol 30(suppl 15):e18143 [asbtract]Google Scholar
  25. 25.
    Yamaguchi F, Kugawa S, Tateno H, Kokubu F, Fukuchi K (2012) Analysis of EGFR, KRAS and P53 mutations in lung cancer using cells in the curette lavage fluid obtained by bronchoscopy. Lung Cancer 78:201–206CrossRefPubMedGoogle Scholar
  26. 26.
    Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28:622–629CrossRefPubMedGoogle Scholar
  27. 27.
    Robles AI, Linke SP, Harris CC (2002) The p53 network in lung carcinogenesis. Oncogene 21:6898–6907CrossRefPubMedGoogle Scholar
  28. 28.
    Berghmans T, Mascaux C, Martin B, Ninane V, Sculier JP (2005) Prognostic role of p53 in stage III non-small cell lung cancer. Anticancer Res 25:2385–2389PubMedGoogle Scholar
  29. 29.
    Wang YC, Lin RK, Tan YH, Chen JT, Chen CY, Wang YC (2005) Wild-type p53 overexpression and its correlation with MDM2 and p14ARF alterations: an alternative pathway to non-small-cell lung cancer. J Clin Oncol 23:154–164CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Giorgio Scagliotti
    • 1
    Email author
  • Jin Hyoung Kang
    • 2
  • David Smith
    • 3
  • Richard Rosenberg
    • 4
  • Keunchil Park
    • 5
  • Sang-We Kim
    • 6
  • Wu-Chou Su
    • 7
  • Thomas E. Boyd
    • 8
  • Donald A. Richards
    • 9
  • Silvia Novello
    • 1
  • Scott M. Hynes
    • 10
  • Scott P. Myrand
    • 11
  • Ji Lin
    • 10
  • Emily Nash Smyth
    • 10
  • Sameera Wijayawardana
    • 10
  • Aimee Bence Lin
    • 10
  • Mary Pinder-Schenck
    • 12
    • 13
  1. 1.University of Turin, S. Luigi HospitalOrbassanoItaly
  2. 2.The Catholic University of Korea, St. Mary’s HospitalSeoulRepublic of Korea
  3. 3.Washington and US Oncology ResearchHoustonUSA
  4. 4.Arizona OncologyTucsonUSA
  5. 5.Samsung Medical CenterSungkyunkwan University School of MedicineSeoulSouth Korea
  6. 6.Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
  7. 7.National Cheng Kung UniversityTainanTaiwan
  8. 8.Willamette Valley Cancer InstituteEugeneUSA
  9. 9.US Oncology ResearchTylerUSA
  10. 10.Eli Lilly and CompanyIndianapolisUSA
  11. 11.Thermo Fisher ScientificAnn ArborUSA
  12. 12.Moffitt Cancer CenterTampaUSA
  13. 13.GlaxoSmith KlinePhiladelphiaUSA

Personalised recommendations