Investigational New Drugs

, Volume 33, Issue 1, pp 201–214 | Cite as

Phase I/II study with ruthenium compound NAMI-A and gemcitabine in patients with non-small cell lung cancer after first line therapy

  • Suzanne Leijen
  • Sjaak A. Burgers
  • Paul Baas
  • Dick Pluim
  • Matthijs Tibben
  • Erik van Werkhoven
  • Enzo Alessio
  • Gianni Sava
  • Jos H. Beijnen
  • Jan H. M. Schellens


Background This phase I/II study determined the maximal tolerable dose, dose limiting toxicities, antitumor activity, the pharmacokinetics and pharmacodynamics of ruthenium compound NAMI-A in combination with gemcitabine in Non-Small Cell Lung Cancer patients after first line treatment. Methods Initial dose escalation of NAMI-A was performed in a 28 day cycle: NAMI-A as a 3 h infusion through a port-a-cath at a starting dose of 300 mg/m2 at day 1, 8 and 15, in combination with gemcitabine 1,000 mg/m2 at days 2, 9 and 16. Subsequently, dose escalation of NAMI-A in a 21 day schedule was explored. At the maximal tolerable dose level of this schedule an expansion group was enrolled of which 15 patients were evaluable for response. Results Due to frequent neutropenic dose interruptions in the third week, the 28 day schedule was amended into a 21 day schedule. The maximal tolerable dose was 300 and 450 mg/m2 of NAMI-A (21 day schedule). Main adverse events consisted of neutropenia, anemia, elevated liver enzymes, transient creatinine elevation, nausea, vomiting, constipation, diarrhea, fatigue, and renal toxicity. Conclusion NAMI-A administered in combination with gemcitabine is only moderately tolerated and less active in NSCLC patients after first line treatment than gemcitabine alone.


NAMI-A Ruthenium Phase I Phase II Clinical study Gemcitabine Non-small cell lung cancer 



We would like to thank Fondazione CRTrieste and Commissariato del Governo – Fondo Trieste for providing financial support. We are greatly indebted to Ms Lidwina Wever and Dr. O. Dalesio of the trial office of The Netherlands Cancer Institute. Finally, we are thankful for the support of G. Dastoli MD, Eudax SrL, Pavia Italy and R. Bianchi, Aquisitio S.p.A., Milan Italy.

Conflict of interest

Suzanne Leijen no conflict of interest

SjaakA. Burgers, no conflict of interest

Paul Baas, no conflict of interest

Dick Pluim, no conflict of interest

Matthijs Tibben, no conflict of interest

Erik van Werkhoven no conflict of interest

Enzo Alessio, no conflict of interest

Gianni Sava, researcher involved in discovery of NAMI-A

Jos H. Beijnen, no conflict of interest

Jan H.M. Schellens no conflict of interest


  1. 1.
    Brabec V, Kasparkova J (2005) Modifications of DNA by platinum complexes. Relation to resistance of tumors to platinum antitumor drugs. Drug Resist Updat 8:131–146PubMedCrossRefGoogle Scholar
  2. 2.
    Galanski M, Jakupec MA, Keppler BK (2005) Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. Curr Med Chem 12:2075–2094PubMedCrossRefGoogle Scholar
  3. 3.
    Galanski M (2006) Recent developments in the field of anticancer platinum complexes. Recent Pat Anticancer Drug Discov 1:285–295PubMedCrossRefGoogle Scholar
  4. 4.
    Reedijk J (1999) Medicinal applications of heavy-metal compounds. Curr Opin Chem Biol 3:236–240PubMedCrossRefGoogle Scholar
  5. 5.
    Weiss RB, Christian MC (1993) New cisplatin analogues in development. Rev Drugs 46:360–377Google Scholar
  6. 6.
    Bratsos I, Gianferrara T, Alessio E, Hartinger MA, Jakupec B, Keppler BK (2011) Ruthenium and other non-platinum anti-cancer compounds; in bioinorganic medicinal chemistry., pp 151-174Google Scholar
  7. 7.
    Giraldi T, Sava G (1981) Selective antimetastatic drugs (review). Anticancer Res 1:163–174PubMedGoogle Scholar
  8. 8.
    Ott I, Gust R (2007) Non platinum metal complexes as anti-cancer drugs. Arch Pharm (Weinheim) 340:117–126CrossRefGoogle Scholar
  9. 9.
    Alessio E, Mestroni G, Bergamo A, Sava G (2004) Ruthenium anticancer drugs. Met Ions Biol Syst 42:323–351PubMedGoogle Scholar
  10. 10.
    Sava G, Pacor S, Mestroni G, Alessio E (1992) Na[trans-RuCl4(DMSO)Im], a metal complex of ruthenium with antimetastatic properties. Clin Exp Metastasis 10:273–280PubMedCrossRefGoogle Scholar
  11. 11.
    Sava G, Bergamo A (1999) Drug control of solid tumour metastases: a critical view. Anticancer Res 19:1117–1124PubMedGoogle Scholar
  12. 12.
    Frasca D, Ciampa J, Emerson J, Umans RS, Clarke MJ (1996) Effects of hypoxia and transferrin on toxicity and DNA binding of ruthenium antitumor agents in hela cells. Metal-Based Drugs 3:197–209PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Clarke MJ (2002) Ruthenium metallopharmaceuticals. Coord Chem Rev 232:69–93CrossRefGoogle Scholar
  14. 14.
    Messori L, Vilchez FG, Vilaplana R, Piccioli F, Alessio E, Keppler B (2000) Binding of antitumor ruthenium(III) complexes to plasma proteins. Metal-Based Drugs 7:335–342PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Messori L, Orioli P, Vullo D, Alessio E, Iengo E (2000) A spectroscopic study of the reaction of NAMI, a novel ruthenium(III)anti-neoplastic complex, with bovine serum albumin. Eur J Biochem 267:1206–1213PubMedCrossRefGoogle Scholar
  16. 16.
    Allardyce CS, Dyson PJ (2001) Ruthenium in medicine: current clinical uses and future prospects. Platin Met Rev 45:62–69Google Scholar
  17. 17.
    Clarke MJ, Zhu F, Frasca DR (1999) Non-platinum chemotherapeutic metallopharmaceuticals. Chem Rev 99:2511–2534PubMedCrossRefGoogle Scholar
  18. 18.
    Clarke MJ, Bitler S, Rennert D, Buchbinder M, Kelman AD (1980) Reduction and subsequent binding of ruthenium ions catalyzed by subcellular components. J Inorg Biochem 12:79–87PubMedCrossRefGoogle Scholar
  19. 19.
    Antonarakis ES, Emadi A (2010) Ruthenium-based chemotherapeutics: are they ready for prime time? Cancer Chemother Pharmacol 66:1–9PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Bloemink MJ, Reedijk J (1996) Cisplatin and derived anticancer drugs: mechanism and current status of DNA binding. Met Ions Biol Syst 32:641–685PubMedGoogle Scholar
  21. 21.
    Reedijk J (2003) New clues for platinum antitumor chemistry: kinetically controlled metal binding to DNA. Proc Natl Acad Sci U S A 100:3611–3616PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Bergamo A, Sava G (2011) Ruthenium anticancer compounds: myths and realities of the emerging metal-based drugs. Dalton Trans 40:7817–7823PubMedCrossRefGoogle Scholar
  23. 23.
    Bergamo A, Gaiddon C, Schellens JH, Beijnen JH, Sava G (2012) Approaching tumour therapy beyond platinum drugs: status of the art and perspectives of ruthenium drug candidates. J Inorg Biochem 106:90–99PubMedCrossRefGoogle Scholar
  24. 24.
    Kostova I (2006) Ruthenium complexes as anticancer agents. Curr Med Chem 13:1085–1107PubMedCrossRefGoogle Scholar
  25. 25.
    Rademaker-Lakhai JM, van den Bongard D, Pluim D, Beijnen JH, Schellens JH (2004) A Phase I and pharmacological study with imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a novel ruthenium anticancer agent. Clin Cancer Res 10:3717–3727PubMedCrossRefGoogle Scholar
  26. 26.
    Frausin F, Scarcia V, Cocchietto M, Furlani A, Serli B, Alessio E, Sava G (2005) Free exchange across cells, and echistatin-sensitive membrane target for the metastasis inhibitor NAMI-A (imidazolium trans-imidazole dimethyl sulfoxide tetrachlororuthenate) on KB tumor cells. J Pharmacol Exp Ther 313:227–233PubMedCrossRefGoogle Scholar
  27. 27.
    Sava G, Frausin F, Cocchietto M, Vita F, Podda E, Spessotto P, Furlani A, Scarcia V, Zabucchi G (2004) Actin-dependent tumour cell adhesion after short-term exposure to the antimetastasis ruthenium complex NAMI-A. Eur J Cancer 40:1383–1396PubMedCrossRefGoogle Scholar
  28. 28.
    Bergamo A, Sava G (2007) Ruthenium complexes can target determinants of tumour malignancy. Dalton Trans; 1267-1272.Google Scholar
  29. 29.
    Gava B, Zorzet S, Spessotto P, Cocchietto M, Sava G (2006) Inhibition of B16 melanoma metastases with the ruthenium complex imidazolium trans-imidazoledimethylsulfoxide-tetrachlororuthenate and down-regulation of tumor cell invasion. J Pharmacol Exp Ther 317:284–291PubMedCrossRefGoogle Scholar
  30. 30.
    Zorzet S, Bergamo A, Cocchietto M, Sorc A, Gava B, Alessio E, Iengo E, Sava G (2000) Lack of In vitro cytotoxicity, associated to increased G(2)-M cell fraction and inhibition of matrigel invasion, may predict In vivo-selective antimetastasis activity of ruthenium complexes. J Pharmacol Exp Ther 295:927–933PubMedGoogle Scholar
  31. 31.
    Debidda M, Sanna B, Cossu A, Posadino AM, Tadolini B, Ventura C, Pintus G (2003) NAMI-A inhibits the PMA-induced ODC gene expression in ECV304 cells: involvement of PKC/Raf/Mek/ERK signalling pathway. Int J Oncol 23:477–482PubMedGoogle Scholar
  32. 32.
    Sava G, Zorzet S, Turrin C, Vita F, Soranzo M, Zabucchi G, Cocchietto M, Bergamo A, DiGiovine S, Pezzoni G, Sartor L, Garbisa S (2003) Dual Action of NAMI-A in inhibition of solid tumor metastasis: selective targeting of metastatic cells and binding to collagen. Clin Cancer Res 9:1898–1905PubMedGoogle Scholar
  33. 33.
    Casarsa C, Mischis MT, Sava G (2004) TGFbeta1 regulation and collagen-release-independent connective tissue re-modelling by the ruthenium complex NAMI-A in solid tumours. J Inorg Biochem 98:1648–1654PubMedCrossRefGoogle Scholar
  34. 34.
    Vacca A, Bruno M, Boccarelli A, Coluccia M, Ribatti D, Bergamo A, Garbisa S, Sartor L, Sava G (2002) Inhibition of endothelial cell functions and of angiogenesis by the metastasis inhibitor NAMI-A. Br J Cancer 86:993–998PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Morbidelli L, Donnini S, Filippi S, Messori L, Piccioli F, Orioli P, Sava G, Ziche M (2003) Antiangiogenic properties of selected ruthenium(III) complexes that are nitric oxide scavengers. Br J Cancer 88:1484–1491PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Bergamo A, Gagliardi R, Scarcia V, Furlani A, Alessio E, Mestroni G, Sava G (1999) In vitro cell cycle arrest, in vivo action on solid metastasizing tumors, and host toxicity of the antimetastatic drug NAMI-A and cisplatin. J Pharmacol Exp Ther 289:559–564PubMedGoogle Scholar
  37. 37.
    Bergamo A, Zorzet S, Gava B, Sorc A, Alessio E, Iengo E, Sava G (2000) Effects of NAMI-A and some related ruthenium complexes on cell viability after short exposure of tumor cells. Anticancer Drugs 11:665–672PubMedCrossRefGoogle Scholar
  38. 38.
    Pintus G, Tadolini B, Posadino AM, Sanna B, Debidda M, Bennardini F, Sava G, Ventura C (2002) Inhibition of the MEK/ERK signaling pathway by the novel antimetastatic agent NAMI-A down regulates c-myc gene expression and endothelial cell proliferation. Eur J Biochem 269:5861–5870PubMedCrossRefGoogle Scholar
  39. 39.
    Sanna B, Debidda M, Pintus G, Tadolini B, Posadino AM, Bennardini F, Sava G, Ventura C (2002) The anti-metastatic agent imidazolium trans-imidazoledimethylsulfoxide-tetrachlororuthenate induces endothelial cell apoptosis by inhibiting the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway. Arch Biochem Biophys 403:209–218PubMedCrossRefGoogle Scholar
  40. 40.
    Pluim D, van Waardenburg RC, Beijnen JH, Schellens JH (2004) Cytotoxicity of the organic ruthenium anticancer drug Nami-A is correlated with DNA binding in four different human tumor cell lines. Cancer Chemother Pharmacol 54:71–78PubMedCrossRefGoogle Scholar
  41. 41.
    Barca A, Pani B, Tamaro M, Russo E (1999) Molecular interactions of ruthenium complexes in isolated mammalian nuclei and cytotoxicity on V79 cells in culture. Mutat Res 423:171–181PubMedCrossRefGoogle Scholar
  42. 42.
    Brabec V, Novakova O (2006) DNA binding mode of ruthenium complexes and relationship to tumor cell toxicity. Drug Resist Updat 9:111–122PubMedCrossRefGoogle Scholar
  43. 43.
    Sava G, Pacor S, Mestroni G, Alessio E (1992) Effects of the Ru(III) complexes [mer-RuCl3(DMSO)2Im]degrees and Na[trans-RuCl4(DMSO)Im] on solid mouse tumors. Anticancer Drugs 3:25–31PubMedCrossRefGoogle Scholar
  44. 44.
    Sava G, Capozzi I, Clerici K, Gagliardi G, Alessio E, Mestroni G (1998) Pharmacological control of lung metastases of solid tumours by a novel ruthenium complex. Clin Exp Metastasis 16:371–379PubMedCrossRefGoogle Scholar
  45. 45.
    Sava G, Clerici K, Capozzi I, Cocchietto M, Gagliardi R, Alessio E, Mestroni G, Perbellini A (1999) Reduction of lung metastasis by ImH[trans-RuCl4(DMSO)Im]: mechanism of the selective action investigated on mouse tumors. Anticancer Drugs 10:129–138PubMedCrossRefGoogle Scholar
  46. 46.
    Sava G, Gagliardi R, Bergamo A, Alessio E, Mestroni G (1999) Treatment of metastases of solid mouse tumours by NAMI-A: comparison with cisplatin, cyclophosphamide and dacarbazine. Anticancer Res 19:969–972PubMedGoogle Scholar
  47. 47.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European organization for research and treatment of cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216PubMedCrossRefGoogle Scholar
  48. 48.
    Storer BE (1989) Design and analysis of phase I clinical trials. Biometrics 45:925–937PubMedCrossRefGoogle Scholar
  49. 49.
    Cancer therapy evaluation program nci common terminology criteria version 3.0 (NCI-CTCv.3.0) March 31, 2003 Publish Date 09 August 2006 9-8-2006.Ref Type: internet communication
  50. 50.
    Crul M, van den Bongard HJ, Tibben MM, van Tellingen O, Sava G, Schellens JH, Beijnen JH (2001) Validated method for the determination of the novel organo-ruthenium anticancer drug NAMI-A in human biological fluids by Zeeman atomic absorption spectrometry. Fresenius J Anal Chem 369:442–445PubMedCrossRefGoogle Scholar
  51. 51.
    Vainchtein LD, Rosing H, Thijssen B, Schellens JH, Beijnen JH (2007) Validated assay for the simultaneous determination of the anti-cancer agent gemcitabine and its metabolite 2′,2′-difluorodeoxyuridine in human plasma by high-performance liquid chromatography with tandem mass spectrometry. Rapid Commun Mass Spectrom 21:2312–2322PubMedCrossRefGoogle Scholar
  52. 52.
    Veltkamp SA, Hillebrand MJ, Rosing H, Jansen RS, Wickremsinhe ER, Perkins EJ, Schellens JH, Beijnen JH (2006) Quantitative analysis of gemcitabine triphosphate in human peripheral blood mononuclear cells using weak anion-exchange liquid chromatography coupled with tandem mass spectrometry. J Mass Spectrom 41:1633–1642PubMedCrossRefGoogle Scholar
  53. 53.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van GM, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European organization for research and treatment of cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216PubMedCrossRefGoogle Scholar
  54. 54.
    Simon R (1989) Optimal two-stage designs for phase II clinical trials. Control Clin Trials 10:1–10PubMedCrossRefGoogle Scholar
  55. 55.
    Dickson, N. R., Jones, S. F., Burris, R. K., and (2011) A phase I dose-escalation study of NKP-1339 in patients with advanced solid tumors refractory to treatment. J Clin Oncol (29 suppl; abstr 2607). Ref Type: AbstractGoogle Scholar
  56. 56.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van GM, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European organization for research and treatment of cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216PubMedCrossRefGoogle Scholar
  57. 57.
    Cocchietto M, Sava G (2000) Blood concentration and toxicity of the antimetastasis agent NAMI-A following repeated intravenous treatment in mice. Pharmacol Toxicol 87:193–197PubMedCrossRefGoogle Scholar
  58. 58.
    Sava G, Pacor S, Bergamo A, Cocchietto M, Mestroni G, Alessio E (1995) Effects of ruthenium complexes on experimental tumors: irrelevance of cytotoxicity for metastasis inhibition. Chem Biol Interact 95:109–126PubMedCrossRefGoogle Scholar
  59. 59.
    Sava G, Cocchietto M (2000) Blood levels of ruthenium following repeated treatments with the antimetastatic compound NAMI-A in healthy beagle dogs. In Vivo 14:741–744PubMedGoogle Scholar
  60. 60.
    Bouma M, Nuijen B, Jansen MT, Sava G, Bult A, Beijnen JH (2002) Photostability profiles of the experimental antimetastatic ruthenium complex NAMI-A. J Pharm Biomed Anal 30:1287–1296PubMedCrossRefGoogle Scholar
  61. 61.
    Bouma M, Nuijen B, Jansen MT, Sava G, Flaibani A, Bult A, Beijnen JH (2002) A kinetic study of the chemical stability of the antimetastatic ruthenium complex NAMI-A. Int J Pharm 248:239–246PubMedCrossRefGoogle Scholar
  62. 62.
    Bouma M, Nuijen B, Sava G, Perbellini A, Flaibani A, van Steenbergen MJ, Talsma H, den Bosch JJ K-v, Bult A, Beijnen JH (2002) Pharmaceutical development of a parenteral lyophilized formulation of the antimetastatic ruthenium complex NAMI-A. Int J Pharm 248:247–259PubMedCrossRefGoogle Scholar
  63. 63.
    Bouma M, Nuijen B, Jansen MT, Sava G, Picotti F, Flaibani A, Bult A, Beijnen JH (2003) Development of a LC method for pharmaceutical quality control of the antimetastatic ruthenium complex NAMI-A. J Pharm Biomed Anal 31:215–228PubMedCrossRefGoogle Scholar
  64. 64.
    Sava G, Bergamo A, Zorzet S, Gava B, Casarsa C, Cocchietto M, Furlani A, Scarcia V, Serli B, Iengo E, Alessio E, Mestroni G (2002) Influence of chemical stability on the activity of the antimetastasis ruthenium compound NAMI-A. Eur J Cancer 38:427–435PubMedCrossRefGoogle Scholar
  65. 65.
    Magnarin M, Bergamo A, Carotenuto ME, Zorzet S, Sava G (2000) Increase of tumour infiltrating lymphocytes in mice treated with antimetastatic doses of NAMI-A. Anticancer Res 20:2939–2944PubMedGoogle Scholar
  66. 66.
    Pacor S, Zorzet S, Cocchietto M, Bacac M, Vadori M, Turrin C, Gava B, Castellarin A, Sava G (2004) Intratumoral NAMI-A treatment triggers metastasis reduction, which correlates to CD44 regulation and tumor infiltrating lymphocyte recruitment. J Pharmacol Exp Ther 310:737–744PubMedCrossRefGoogle Scholar
  67. 67.
    Vadori M, Pacor S, Vita F, Zorzet S, Cocchietto M, Sava G (2012) Features and full reversibility of the renal toxicity of the ruthenium-based drug NAMI-A in mice. J Inorg Biochem 118C:21–27Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Suzanne Leijen
    • 1
  • Sjaak A. Burgers
    • 2
  • Paul Baas
    • 2
    • 3
  • Dick Pluim
    • 1
  • Matthijs Tibben
    • 4
  • Erik van Werkhoven
    • 5
  • Enzo Alessio
    • 6
  • Gianni Sava
    • 7
    • 8
  • Jos H. Beijnen
    • 4
  • Jan H. M. Schellens
    • 1
    • 9
  1. 1.Department of Clinical Pharmacology, The Netherlands Cancer InstituteAmsterdamThe Netherlands
  2. 2.Department of Thoracic Oncology, The Netherlands Cancer InstituteAmsterdamThe Netherlands
  3. 3.Department of Thoracic Oncology, Amsterdam Medical CenterAmsterdamThe Netherlands
  4. 4.Department of Pharmacy and Pharmacology, Slotervaart HospitalAmsterdamThe Netherlands
  5. 5.Biometrics Department, The Netherlands Cancer InstituteAmsterdamThe Netherlands
  6. 6.University of Trieste, Department of Chemical and Pharmaceutical SciencesTriesteItaly
  7. 7.Callerio Foundation OnlusTriesteItaly
  8. 8.Department of Life SciencesUniversity of TriesteTriesteItaly
  9. 9.Department of Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations