Skip to main content


Log in

In vitro 3D colon tumor penetrability of SRJ09, a new anti-cancer andrographolide analog

  • Published:
Investigational New Drugs Aims and scope Submit manuscript


Limited tumor penetrability of anti-cancer drugs is recognized as one of the major factors that lead to poor anti-tumor activity. SRJ09 (3,19-(2-bromobenzylidene) andrographolide) has been identified as a lead anti-cancer agent for colon cancer. Recently, this compound was shown by us to be a mutant K-Ras binder. In this present study, the penetrability of SRJ09 through the DLD-1 colon cancer multicell layer (MCL) was evaluated. The amount of SRJ09 that penetrated through the MCL was quantitated by utilizing high performance liquid chromatography (HPLC). Histopathological staining was used to visualize the morphology of MCL. A chemosensitivity assay was performed to assess the anti-cancer activity of SRJ09 in DLD-1 cells. SRJ09 was able to penetrate through DLD-1 MCL and is inversely proportional with the MCL thickness. The flow rates for SRJ09 through MCL were 0.90 ± 0.20 μM/min/cm2 and 0.56 ± 0.06 μM/min/cm2 for days 1 and 5, respectively, which are better than doxorubicin. Histopathological examination revealed that the integrity of the DLD-1 MCL was retained and no visible damage was inflicted on the cell membrane, confirming the penetration of SRJ09 was by diffusion. Short term exposure (1 h) in DLD-1 cells demonstrated SRJ09 had IC50 of 41 μM which was approximately 4-folds lower than andrographolide, the parent compound of SRJ09. In conclusion, SRJ09 successfully penetrated through DLD-1 MCL by diffusion and emerged as a potential candidate to be developed as a clinically viable anti-colon cancer drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others


  1. Ewesuedo RB, Ratain MJ (2003) Principles of cancer chemotherapy. In: Vokes EE, Golomb HM (eds) Oncologic therapies, 2nd edn. Springer, Berlin, pp 19–66

    Chapter  Google Scholar 

  2. Phillips RM, Loadman PM, Cronin BP (1998) Evaluation of novel in vitro assay for assessing drug penetration into avascular regions of tumors. Br J Cancer 77:2112–2119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Tunggal JK, Cowan DS, Shaikh H, Tannock IF (1999) Penetration of anti-cancer drugs through solid tissue: a factor that limits the effectiveness of chemotherapy for solid tumors. Clin Cancer Res 5:1583–1586

    CAS  PubMed  Google Scholar 

  4. Minchinton AI, Tannock IF (2006) Drug penetration in solid tumors. Nat Cancer Rev 6:583–92

    Article  CAS  Google Scholar 

  5. Shannon AM, Bouchier-Hayes DJ, Condron CM, Toomey D (2003) Tumor hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev 29:297–307

    Article  CAS  PubMed  Google Scholar 

  6. De Souza R, Zahedi P, Badame RM, Allen C, Piquette-Miller M (2011) Chemotherapy dosing schedule influences drug resistance development in ovarian cancer. Mol Cancer Ther 10(7):1289–1299

    Article  PubMed  Google Scholar 

  7. Kang MR, Kim MS, Kim SS, Ahn CH, Yoo NJ, Lee SH (2009) NF-kappa B-signalling proteins p50/p105, p52/p100, RelA, and IKKepsilon are over-expressed in oesophageal squamous cell carcinomas. Pathology 41:622–625

    Article  CAS  PubMed  Google Scholar 

  8. Mure H, Matsuzaki K, Kitazato KT, Mizobuchi Y, Kuwayama K, Kageji T, Nagahiro S (2010) Akt2 and Akt3 play a pivotal role in malignant gliomas. Neuro Oncol 12:221–231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Wang Z, Li Y, Banerjee S, Kong D, Ahmad A, Nogueira V, Hay N, Sarkar FH (2010) Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-kappa B-signalling pathways. J Cell Biochem 109:426–436

    Google Scholar 

  10. Zaravinos A, Chatziioannou M, Lambrou GI, Boulalas I, Delakas D, Spandidos DA (2011) Implication of RAF and RKIP genes in urinary bladder cancer. Pathol Oncol Res 17(2):181–190

    Article  CAS  PubMed  Google Scholar 

  11. Lal RB, Rudolph DL, Folks TM, Hooper WC (1993) Over-expression of insulin-like growth factor receptor type-I in T-cell lines infected with human T-lymphotropic virus types-I and –II. Leuk Res 17:31–35

    Article  CAS  PubMed  Google Scholar 

  12. Milas L, Mason KA, Ang KK (2003) Epidermal growth factor receptor and its inhibition in radiotherapy: in vivo findings. Int J Radiat Biol 79:539–545

    Article  CAS  PubMed  Google Scholar 

  13. Perona R (2006) Cell signalling: growth factors and tyrosine kinase receptors. Clin Transl Oncol 8:77–82

    Article  CAS  PubMed  Google Scholar 

  14. Lebeau A, Grob T, Holst F, Seyedi-Fazllolahi N, Moch H, Terraciano L, Turzynski A, Choschzick M, Sauter G, Simon R (2008) Oestrogen receptor gene (ESR1) amplification is frequent in endometrial carcinoma and its precursor lesions. J Pathol 216:151–157

    Article  CAS  PubMed  Google Scholar 

  15. Kurenova EV, Hunt DL, He D, Fu AD, Massoll NA, Golubovskaya VM, Garces CA, Cance WG (2009) Vascular endothelial growth factor receptor-3 promotes breast cancer cell proliferation, motility and survival in vitro and tumor formation in vivo. Cell Cycle 8:2266–2280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Modok S, Mellor HR, Callaghan R (2006) Modulation of multidrug resistance efflux pump activity to overcome chemoresistance in cancer. Curr Opin Pharmacol 6(4):350–354

    Article  CAS  PubMed  Google Scholar 

  17. Muller C, Bailly JD, Goubin F, Laredo J, Jaffrézou JP, Bordier C, Laurent G (1994) Verapamil decreases P-glycoprotein expression in multidrug-resistant human leukemic cell lines. Int J Cancer 56(5):749–754

    Article  CAS  PubMed  Google Scholar 

  18. Lum B, Gosland MP, Kaubisch S, Sikic BI (1993) Molecular targets in oncology: implications of the multidrug resistance gene. Pharmacotherapy 13:88–109

    CAS  PubMed  Google Scholar 

  19. Dantzig AH, Shepard RL, Cao J, Law KL, Ehlhardt EJ, Baughman TM et al (1996) Reversal of P-glycoprotein-mediated multidrug resistance by a potent cyclopropyldibenzosuberane modulator, LY335979. Cancer Res 56:4171–4179

    CAS  PubMed  Google Scholar 

  20. Fields A, Hochster H, Runowicz C, Speyer J, Goldberg G, Cohen C et al (1998) PSC833: initial clinical results in refractory ovarian cancer patients. Curr Opin Oncol 10(Suppl 1):S21

    CAS  PubMed  Google Scholar 

  21. Toppmeyer D, Seidman AD, Pollak M, Russell C, Tkaczuk K, Verma S, Overmoyer B, Garg V, Ette E, Harding MW et al (2002) Safety and efficacy of the multidrug resistance inhibitor Incel (biricodar; VX-710) in combination with paclitaxel for advanced breast cancer refractory to paclitaxel. Clin Cancer Res 8:670–678

    CAS  PubMed  Google Scholar 

  22. Wartenberg M, Fischer K, Hescheler J, Sauer H (2000) Redox regulation of P-glycoprotein-mediated multidrug resistance in multicellular prostate tumor spheroids. Int J Cancer 85:167–274

    Article  Google Scholar 

  23. Okada T, Tanaka K, Nakatani F, Sakimura R, Matsunobu T, Li X, Hanada M, Nakamura T, Oda Y, Tsuneyoshi M et al (2006) Involvement of P-glycoprotein and MRP1 in resistance to cyclic tetrapeptide subfamily of histone deacetylase inhibitors in the drug-resistant osteosarcoma and Ewing’s sarcoma cells. Int J Cancer 118:90–97

    Article  CAS  PubMed  Google Scholar 

  24. Burger H, van Tol H, Boersma AW, Brok M, Wiemer EA, Stoter G, Nooter K (2004) Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood 104:2940–2942

    Article  CAS  PubMed  Google Scholar 

  25. Tannock IF, Lee CM, Tunggal JK, Cowan DS, Egorin MJ (2002) Limited penetration of anti-cancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy. Clin Cancer Res 8:878–884

    CAS  PubMed  Google Scholar 

  26. Grantab R, Sivanathan S, Tannock IF (2006) The penetration of anti-cancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells. Cancer Res 66:1033–1039

    Article  CAS  PubMed  Google Scholar 

  27. Tsang WP, Chau SPY, Kong SK, Fung KP, Kwok TT (2003) Reactive oxygen species mediate doxorubicin induced p53-independent apoptosis. Life Sci 73(16):2047–2058

    Article  CAS  PubMed  Google Scholar 

  28. Mellor HR, Callaghan R (2011) Accumulation and distribution of doxorubicin in tumor spheroids: the influence of acidity and expression of P-glycoprotein. Cancer Chemother Pharmacol 68:1179–1190

    Article  CAS  PubMed  Google Scholar 

  29. Jada SR, Matthews C, Saad MS, Hamzah AS, Lajis NH, Stevens MFG, Stanslas J (2008) Benzylidene derivatives of andrographolide inhibits growth of breast and colon cancer cells in vitro by inducing G1 arrest and apoptosis. Br J Pharmacol 155:641–654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Hocker HJ, Cho KJ, Chen CYK, Rambahal N, Sagineedu SR, Shaari K et al (2013) Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function. Proc Natl Acad Sci U S A 110(25):10201–10206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Jada SR, Hamzah AS, Lajis NH, Saad MS, Stevens MF, Stanslas J (2006) Semisynthesis and cytotoxic activities of andrographolide analogues. J Enzym Inhib Med Chem 21(2):145–155

    Article  CAS  Google Scholar 

  32. Evans CJ, Phillips RM, Jones PF, Loadman PM, Sleeman BD, Twelves CJ, Smye SW (2009) A mathematical model of doxorubicin penetration through multicellular layers. J Theor Biol 4:598–608

    Article  Google Scholar 

  33. Hicks KO, Pruijn FB, Secomb TW, Hay MP, Hsu R, Brown JM, Denny WA, Dewhirst MW, Wilson WR (2006) Use of three-dimensional tissue cultures to model extravascular transport and predict in vivo activity of hypoxia-targeted anticancer drugs. J Natl Cancer Inst 98(16):1118–1128

  34. Pruijn FB, Sturman J, Liyanage S, Hicks KO, Hay MP, Wilson WR (2005) Extravascular transport of drugs in tumor tissue: Effect of lipophilicity on diffusion of tirapazamine analogues in multicellular layer cultures. J Med Chem 48:1079–1087

    Article  CAS  PubMed  Google Scholar 

  35. Hansch C, Leo A, Hoekman D (1995) Exploring QSAR: Hydrophobic, Electronic, and Steric Constants. American Chemistry Society, Washington, DC. ISBN 978-0-8412-3060-6

    Google Scholar 

  36. Lim SH (2007). Mechanisms of Antitumour Activity of 3,19-(2 Bromobenzylidene) Andrographolide (SRJ09). Master thesis, Universiti Putra Malaysia. (

  37. Endicott JA, Ling V (1989) The Biochemistry of P-Glycoprotein-Mediated Multidrug Resistance. Annu Rev Biochem 58:137–171

    Article  CAS  PubMed  Google Scholar 

  38. Durand RE (1989) Distribution and activity of antineoplastic drugs in a tumor model. J Natl Cancer Inst 81(2):146–152

    Article  CAS  PubMed  Google Scholar 

  39. Toffoli G, Viel A, Tumiotto L, Biscontin G, Rossi C, Boiocchi M (1991) Pleiotropic-resistant phenotype is a multifactorial phenomenon in human colon carcinoma cell lines. Br J Cancer 63(1):51–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Chhikara BS, Mandal D, Parang K (2012) Synthesis, anticancer activities, and cellular uptake studies of lipophilic derivatives of doxorubicin succinate. J Med Chem 55(4):1500–1510

  41. Hillman GG, Wang Y, Kucuk O, Che M, Doerge DR, Yudelev M et al (2004) Genistein potentiates inhibition of tumor growth by radiation in a prostate cancer orthotopic model. Mol Cancer Ther 3:1271–1279

    CAS  PubMed  Google Scholar 

  42. Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H et al (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320(5876):661–664

    Article  CAS  PubMed  Google Scholar 

  43. Sagineedu SR. Semisynthesis of selected andrographolide derivatives and in vitro evaluation for cytotoxic and antiangiogenic properties. PhD Thesis, Universiti Putra Malaysia, Malaysia, 2012.

  44. Philip B, Ito K, Moreno-Sánchez R, Ralph SJ (2013) HIF expression and the role of hypoxic microenvironments within primary tumors as protective sites driving cancer stem cell renewal and metastatic progression. Carcinogenesis 34(8):1699–707

    Article  CAS  PubMed  Google Scholar 


  46. Thant AA, Wu Y, Lee J, Mishra DK, Garcia H, Koeffler HP, Vadgama JV (2008) Role of caspases in 5-FU and selenium-induced growth inhibition of colorectal cancer cells. Anti-cancer Res 28(6A):3579–92

    CAS  Google Scholar 

  47. Sarthy AV, Morgan-Lappe SE, Zakula D, Vernetti L, Schurdak M, Packer JC, Anderson MG, Shirasawa S, Sasazuki T, Fesik SW (2007) Survivin depletion preferentially reduces the survival of activated K-Ras-transformed cells. Mol Cancer Ther 6(1):269–76

    Article  CAS  PubMed  Google Scholar 

Download references


The project was funded by the Research University Grant Scheme (RUGS) (Grant: 04-01-09-0713RU; 04-02-12-2017RU) through the Ministry of Higher Education. The European Association for Cancer Research (EACR) is thanked for providing a travel fellowship to Charng Choon Wong.

Conflict of interest

The authors state no conflict of interest.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Johnson Stanslas.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(DOC 30.5 kb)


(DOC 112 kb)


(DOC 168 kb)


(DOC 70.5 kb)


(DOC 121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, C.C., Periasamy, N., Sagineedu, S.R. et al. In vitro 3D colon tumor penetrability of SRJ09, a new anti-cancer andrographolide analog. Invest New Drugs 32, 806–814 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: