Investigational New Drugs

, Volume 31, Issue 5, pp 1192–1200 | Cite as

Methylation and histone deacetylase inhibition in combination with platinum treatment in patients with advanced malignancies

  • Gerald S. FalchookEmail author
  • Siqing Fu
  • Aung Naing
  • David S. Hong
  • Wei Hu
  • Stacy Moulder
  • Jennifer J. Wheler
  • Anil K. Sood
  • Ernesto Bustinza-Linares
  • Kristin L. Parkhurst
  • Razelle Kurzrock


Purpose The combination of DNA methylation inhibitors and histone deacetylase inhibitors is synergistic in gene expression activation and may overcome platinum resistance. Sequential treatment with azacitidine and valproic acid (VPA) in combination with carboplatin may overcome resistance to platinum-based therapy, and we conducted a phase I trial to assess safety, maximum tolerated dose (MTD), and clinical correlates. Experimental Design Patients with advanced solid tumors refractory to standard therapy were eligible. In cohorts of escalating doses, patients received azacitidine for 5 days from days 1 to 5, VPA for 7 days from days 5 to 11, and carboplatin starting in the second cycle on days 3 and 10. Clinical correlates included evaluation of epigenetic changes, methylation patterns, and histone acetylation levels in peripheral blood mononuclear cells. Results Thirty-two patients were treated. The MTD was 75 mg/m2 azacitidine, 20 mg/kg VPA, and AUC 3.0 carboplatin. Minor responses or stable disease lasting ≥4 months were achieved by six patients (18.8 %), including three with platinum-resistant or platinum-refractory ovarian cancer. The most common adverse events grade ≥3 were fatigue (81 %) and neutropenia (69 %). Dose-limiting toxicity occurred in six patients (18.8 %), including four patients with grade 3 altered mental status. Death receptor 4 (DR4) methylation was shown to decrease in a subset of patients, but there was no relationship with tumor response or number of cycles received. Conclusions Combination of azacitidine, VPA, and carboplatin demonstrates decreased DR4 methylation and modest evidence of antitumor activity in patients with heavily treated advanced malignancies.


Azacitidine Valproic acid Carboplatin Methylation Histone deacetylase inhibition 



We would like to thank Adrienne Howard and Alambardar Khuwaja (Department of Investigational Cancer Therapeutics) for their contributions to this study’s operation and DeYu Shen (Department of Gynecologic Oncology and Reproductive Medicine) for technical assistance.

Grant support

Financial support for this study was provided by Celgene Corporation and UT MD Anderson SPORE in Ovarian (P50 CA083639) and Uterine (P50 CA098258) cancer.

Ethical standards

The research performed complies with the current laws of the country in which it was performed. All patients signed consent in accordance with the guidelines of the M.D. Anderson Cancer Center Institutional Review Board.

Conflict of interest

Dr. Falchook and Dr. Fu received research funding from Celgene. The other authors have no conflict of interest to disclose.

Financial support


Supplementary material

10637_2013_3_MOESM1_ESM.doc (54 kb)
ESM 1 (DOC 54 kb)


  1. 1.
    Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428. doi: CrossRefGoogle Scholar
  2. 2.
    Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33. doi: CrossRefGoogle Scholar
  3. 3.
    Mutskov V, Felsenfeld G (2004) Silencing of transgene transcription precedes methylation of promoter DNA and histone H3 lysine 9. EMBO J 23:138–149. doi: CrossRefGoogle Scholar
  4. 4.
    Masumoto H, Hawke D, Kobayashi R, Verreault A (2005) A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436:294–298. doi: CrossRefGoogle Scholar
  5. 5.
    Markman M (2008) Pharmaceutical management of ovarian cancer : current status. Drugs 68:771–789CrossRefGoogle Scholar
  6. 6.
    Morgan RJ Jr, Alvarez RD, Armstrong DK, Boston B, Chen LM, Copeland L, Fowler J, Gaffney DK, Gershenson D, Greer BE, Grigsby PW, Havrilesky LJ, Johnston C, Lancaster JM, Lele S, Matulonis U, O’Malley D, Ozols RF, Remmenga SW, Sabbatini P, Schink J, Teng N (2008) Ovarian cancer. Clinical practice guidelines in oncology. J Natl Compr Cancer Netw 6:766–794CrossRefGoogle Scholar
  7. 7.
    Markman M (2008) Second-line therapy for ovarian cancer. Clin Adv Hematol Oncol 6:421–422PubMedGoogle Scholar
  8. 8.
    Bukowski RM, Ozols RF, Markman M (2007) The management of recurrent ovarian cancer. Semin Oncol 34:S1–S15. doi: CrossRefGoogle Scholar
  9. 9.
    Creusot F, Acs G, Christman JK (1982) Inhibition of DNA methyltransferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2′-deoxycytidine. J Biol Chem 257:2041–2048PubMedGoogle Scholar
  10. 10.
    Sato T, Suzuki M, Sato Y, Echigo S, Rikiishi H (2006) Sequence-dependent interaction between cisplatin and histone deacetylase inhibitors in human oral squamous cell carcinoma cells. Int J Oncol 28:1233–1241PubMedGoogle Scholar
  11. 11.
    Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21:103–107. doi: CrossRefGoogle Scholar
  12. 12.
    Li Y, Hu W, Shen DY, Kavanagh JJ, Fu S (2009) Azacitidine enhances sensitivity of platinum-resistant ovarian cancer cells to carboplatin through induction of apoptosis. Am J Obstet Gynecol 200(177):e171–e179. doi: Google Scholar
  13. 13.
    Fu S, Hu W, Iyer R, Kavanagh JJ, Coleman RL, Levenback CF, Sood AK, Wolf JK, Gershenson DM, Markman M, Hennessy BT, Kurzrock R, Bast RC Jr (2011) Phase 1b-2a study to reverse platinum resistance through use of a hypomethylating agent, azacitidine, in patients with platinum-resistant or platinum-refractory epithelial ovarian cancer. Cancer 117:1661–1669. doi: CrossRefGoogle Scholar
  14. 14.
    Lin CT, Lai HC, Lee HY, Lin WH, Chang CC, Chu TY, Lin YW, Lee KD, Yu MH (2008) Valproic acid resensitizes cisplatin-resistant ovarian cancer cells. Cancer Sci 99:1218–1226. doi: CrossRefGoogle Scholar
  15. 15.
    Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, Yang H, Rosner G, Verstovsek S, Rytting M, Wierda WG, Ravandi F, Koller C, Xiao L, Faderl S, Estrov Z, Cortes J, O’Brien S, Estey E, Bueso-Ramos C, Fiorentino J, Jabbour E, Issa JP (2006) Phase 1/2 study of the combination of 5-aza-2′-deoxycytidine with valproic acid in patients with leukemia. Blood 108:3271–3279. doi: CrossRefGoogle Scholar
  16. 16.
    Issa JP, Gharibyan V, Cortes J, Jelinek J, Morris G, Verstovsek S, Talpaz M, Garcia-Manero G, Kantarjian HM (2005) Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J Clin Oncol 23:3948–3956. doi: CrossRefGoogle Scholar
  17. 17.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216CrossRefGoogle Scholar
  18. 18.
    Trotti A, Colevas AD, Setser A, Rusch V, Jaques D, Budach V, Langer C, Murphy B, Cumberlin R, Coleman CN, Rubin P (2003) CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol 13:176–181. doi: CrossRefGoogle Scholar
  19. 19.
    Braiteh F, Soriano AO, Garcia-Manero G, Hong D, Johnson MM, Silva Lde P, Yang H, Alexander S, Wolff J, Kurzrock R (2008) Phase I study of epigenetic modulation with 5-azacytidine and valproic acid in patients with advanced cancers. Clin Cancer Res 14:6296–6301. doi: CrossRefGoogle Scholar
  20. 20.
    Fang F, Balch C, Schilder J, Breen T, Zhang S, Shen C, Li L, Kulesavage C, Snyder AJ, Nephew KP, Matei DE (2010) A phase 1 and pharmacodynamic study of decitabine in combination with carboplatin in patients with recurrent, platinum-resistant, epithelial ovarian cancer. Cancer 116:4043–4053. doi: CrossRefGoogle Scholar
  21. 21.
    Cass I, Baldwin RL, Varkey T, Moslehi R, Narod SA, Karlan BY (2003) Improved survival in women with BRCA-associated ovarian carcinoma. Cancer 97:2187–2195. doi: CrossRefGoogle Scholar
  22. 22.
    Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Levine DA, Boyd J, Reis-Filho JS, Ashworth A (2008) Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451:1111–1115. doi: CrossRefGoogle Scholar
  23. 23.
    Strathdee G, MacKean MJ, Illand M, Brown R (1999) A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer. Oncogene 18:2335–2341. doi: CrossRefGoogle Scholar
  24. 24.
    Gifford G, Paul J, Vasey PA, Kaye SB, Brown R (2004) The acquisition of hMLH1 methylation in plasma DNA after chemotherapy predicts poor survival for ovarian cancer patients. Clin Cancer Res 10:4420–4426. doi: CrossRefGoogle Scholar
  25. 25.
    Tang X, Wu W, Sun SY, Wistuba II, Hong WK, Mao L (2004) Hypermethylation of the death-associated protein kinase promoter attenuates the sensitivity to TRAIL-induced apoptosis in human non-small cell lung cancer cells. Mol Cancer Res 2:685–691PubMedGoogle Scholar
  26. 26.
    Teodoridis JM, Hall J, Marsh S, Kannall HD, Smyth C, Curto J, Siddiqui N, Gabra H, McLeod HL, Strathdee G, Brown R (2005) CpG island methylation of DNA damage response genes in advanced ovarian cancer. Cancer Res 65:8961–8967. doi: CrossRefGoogle Scholar
  27. 27.
    Taniguchi T, Tischkowitz M, Ameziane N, Hodgson SV, Mathew CG, Joenje H, Mok SC, D’Andrea AD (2003) Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med 9:568–574. doi: CrossRefGoogle Scholar
  28. 28.
    Issa JP, Kantarjian HM (2009) Targeting DNA methylation. Clin Cancer Res 15:3938–3946. doi: CrossRefGoogle Scholar
  29. 29.
    Griffiths EA, Gore SD (2008) DNA methyltransferase and histone deacetylase inhibitors in the treatment of myelodysplastic syndromes. Semin Hematol 45:23–30. doi: CrossRefGoogle Scholar
  30. 30.
    Soriano AO, Yang H, Faderl S, Estrov Z, Giles F, Ravandi F, Cortes J, Wierda WG, Ouzounian S, Quezada A, Pierce S, Estey EH, Issa JP, Kantarjian HM, Garcia-Manero G (2007) Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome. Blood 110:2302–2308. doi: CrossRefGoogle Scholar
  31. 31.
    Blum W, Klisovic RB, Hackanson B, Liu Z, Liu S, Devine H, Vukosavljevic T, Huynh L, Lozanski G, Kefauver C, Plass C, Devine SM, Heerema NA, Murgo A, Chan KK, Grever MR, Byrd JC, Marcucci G (2007) Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J Clin Oncol 25:3884–3891. doi: CrossRefGoogle Scholar
  32. 32.
    Steele N, Finn P, Brown R, Plumb JA (2009) Combined inhibition of DNA methylation and histone acetylation enhances gene re-expression and drug sensitivity in vivo. Br J Cancer 100:758–763. doi: CrossRefGoogle Scholar
  33. 33.
    Glaser KB (2007) HDAC inhibitors: clinical update and mechanism-based potential. Biochem Pharmacol 74:659–671. doi: CrossRefGoogle Scholar
  34. 34.
    Qin T, Jelinek J, Si J, Shu J, Issa JP (2009) Mechanisms of resistance to 5-aza-2′-deoxycytidine in human cancer cell lines. Blood 113:659–667. doi: CrossRefGoogle Scholar
  35. 35.
    Bachman KE, Park BH, Rhee I, Rajagopalan H, Herman JG, Baylin SB, Kinzler KW, Vogelstein B (2003) Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 3:89–95CrossRefGoogle Scholar
  36. 36.
    Borthakur G, Ahdab SE, Ravandi F, Faderl S, Ferrajoli A, Newman B, Issa JP, Kantarjian H (2008) Activity of decitabine in patients with myelodysplastic syndrome previously treated with azacitidine. Leuk Lymphoma 49:690–695. doi: CrossRefGoogle Scholar
  37. 37.
    Costello JF, Fruhwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, Wright FA, Feramisco JD, Peltomaki P, Lang JC, Schuller DE, Yu L, Bloomfield CD, Caligiuri MA, Yates A, Nishikawa R, Su Huang H, Petrelli NJ, Zhang X, O’Dorisio MS, Held WA, Cavenee WK, Plass C (2000) Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 24:132–138. doi: CrossRefGoogle Scholar
  38. 38.
    Baylin SB, Herman JG (2000) DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16:168–174CrossRefGoogle Scholar
  39. 39.
    Suzuki H, Gabrielson E, Chen W, Anbazhagan R, van Engeland M, Weijenberg MP, Herman JG, Baylin SB (2002) A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet 31:141–149. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Gerald S. Falchook
    • 1
    Email author
  • Siqing Fu
    • 1
  • Aung Naing
    • 1
  • David S. Hong
    • 1
  • Wei Hu
    • 2
  • Stacy Moulder
    • 3
  • Jennifer J. Wheler
    • 1
  • Anil K. Sood
    • 2
    • 4
    • 5
  • Ernesto Bustinza-Linares
    • 6
  • Kristin L. Parkhurst
    • 1
  • Razelle Kurzrock
    • 7
  1. 1.Department of Investigational Cancer Therapeutics (Phase I Program)The University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of Gynecologic OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  3. 3.Department of Breast Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  4. 4.Department of Cancer BiologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  5. 5.Center for RNA Interference and Non-Coding RNAThe University of Texas MD Anderson Cancer CenterHoustonUSA
  6. 6.Sylvester Comprehensive Cancer CenterUniversity of MiamiMiamiUSA
  7. 7.Moores Cancer CenterUniversity of California, San DiegoSan DiegoUSA

Personalised recommendations